Characteristic Studies on Electro-Discharge-Sintering of Ti5Si3 Powder Synthesized by Mechanical Alloying

기계적 합금화에 의해 제조된 Ti5Si3 분말의 전기방전소결 특성 연구

  • Cheon, Yeon-wuk (Department of Advanced Materials Engineering, Sejong University) ;
  • Cho, Yu-jung (Department of Advanced Materials Engineering, Sejong University) ;
  • Kang, Tae-ju (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, Jung-yeul (Department of Semiconductor & Electronics Engineering, Uiduk University) ;
  • Park, Jun-sik (Department of Materials Engineering, Hanbat University) ;
  • Byun, Chang-sup (Department of Materials Engineering, Hanbat University) ;
  • Lee, Sang-ho (Department of Materials Engineering, Hanbat University) ;
  • Lee, Won-hee (Department of Advanced Materials Engineering, Sejong University)
  • 천연욱 (세종대학교 신소재공학과) ;
  • 조유정 (세종대학교 신소재공학과) ;
  • 강태주 (세종대학교 신소재공학과) ;
  • 김정열 (위덕대학교 반도체전자공학과) ;
  • 박준식 (한밭대학교 재료공학과) ;
  • 변창섭 (한밭대학교 재료공학과) ;
  • 이상호 (한밭대학교 재료공학과) ;
  • 이원희 (세종대학교 신소재공학과)
  • Received : 2009.01.15
  • Published : 2009.10.25

Abstract

The consolidation of mechanical alloyed $Ti_5Si_3$ powder by electro-discharge-sintering has been investigated. A single pulse of 2.5 to 8.0 kJ/0.34 g was applied to each powder mixture using 300 and $450{\mu}F$ capacitors. A bulk-like solid with $Ti_5Si_3$ phase has been successfully fabricated by the discharge with an input energy of more than 2.5 kJ in less than $160{\mu}sec$. Micro-Vickers hardness was found to be higher than 1350, which is significantly higher than that of a conventional high temperature sintered sample. The formation of $Ti_5Si_3$ and consolidation occurred through a fast solid state diffusion reaction.

Keywords

Acknowledgement

Supported by : 한밭대학교

References

  1. S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, J. Kor. Inst. Met. & Mater. 33, 107 (1995)
  2. A. K. Vasude'van and J. J. Petrovic, Mater. Sci. Eng. A 155, 1 (1992) https://doi.org/10.1016/0921-5093(92)90308-N
  3. J. K. Tien, G. E. Vignoul, and W. M. Kopp, Mater. Sci. Eng. A 143, 43 (1991) https://doi.org/10.1016/0921-5093(91)90724-2
  4. M. Oehring and R. Bormann, Mater. Sci. Eng. A 134, 1330 (1991) https://doi.org/10.1016/0921-5093(91)90984-U
  5. D. Parlapanski, S. Denev, S. Ruseva, and E. Gatev, J. Less-Com-mon Met. 171, 231 (1991) https://doi.org/10.1016/0022-5088(91)90146-U
  6. J. H. Ahn, H. S. Chung, R. Watanabe, and Y. H. Park, Mater. Sci. Forum. 88, 347 (1991) https://doi.org/10.4028/www.scientific.net/MSF.88-90.347
  7. M. A. Morris and D. G. Morris, J. Mater. Sci. 26, 4687 (1991) https://doi.org/10.1007/BF00612407
  8. K. Omuro and H. Miura, Jpn. J. Appl. Phys. Lett. 60, 1433 (1992) https://doi.org/10.1063/1.107313
  9. K. Omuro and H. Miura, Jpn. J. Appl. Phys. 30, L851 (1991) https://doi.org/10.1143/JJAP.30.L851
  10. F. Padella, E. Paradiso, N. Burgio, M. Magini, S. Martelli, W. Guo, and A. Iasonna, J. Less-Common Met. 175, 79 (1991) https://doi.org/10.1016/0022-5088(91)90351-4
  11. K. Okadome, K. Uhno, and T. Arakaw, J. Mater. Sci. 30, 1807 (1995) https://doi.org/10.1007/BF00351614
  12. J. Schlichting, High Temp-High Pressure. 10, 241 (1978)
  13. F. D. Gac and J. J. Petrovic, J. Amer. Ceram. Soc. 68, C200 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb10182.x
  14. T. C. Lu, Y. G. Deng, C, G. Levi, and R. Mehrabian, Advanced Metal Matrix Composites for Elevated Temperatures Conference Proceedings (eds. M. N. Gungor, E. J. Lavernia, and S. G. Fishman), p11, ASM International, Materials Park, Ohio, USA (1991)
  15. T. C. Lu, A. G. Evans, R. J. Hecht, and R. Mehrabian, Acta Metall. Mater. 39, 1853 (1991) https://doi.org/10.1016/0956-7151(91)90154-S
  16. P. J. Mestcher and D. S. Schwartz, JOM. 41, 52 (1989)
  17. J. D. Cotton, Y. S. Kimm, and M. J. Kaufman, Mater. Sci. Eng. A 144, 287 (1991) https://doi.org/10.1016/0921-5093(91)90235-F
  18. J. J. Pertrovic, MRS Bulletin. 7, 35 (1993)
  19. G. Frommeyer, R. Rosenkranz, and C. Ludeke, Z. Metallkde. 81, 307 (1990)
  20. A. J. Thom, Y. M. Kim, and M. A. Kinc, Mater. Res. Soc. Symo. Proc. 288, 1037 (1992) https://doi.org/10.1557/PROC-288-1037
  21. S. W. Jo, G. W. Lee, J. T. Moon, and Y. S. Kim, J. Kor. Inst. Met. & Mater. 33, 107 (1995)
  22. H. S. Park and K. S. Hwang, J. Kor. Inst. Met. & Mater. 33, 750 (1995)
  23. D. A. Hardwick, P. L. Martin, and R. J. Moores, Scr. Metall. 27, 319 (1992) https://doi.org/10.1016/0956-716X(92)90199-O
  24. K. J. Park and S. K. Hwang, J. Kor. Inst. Met. & Mater. 34, 296 (1996)
  25. H. S. Jang, Y. J. Cho, T. J. Kang, K. B. Kim, and W. H. Lee, J. Kor. Inst. Met. & Mater. 47, 488 (2009)
  26. Z. A. Munir, Ceramic Bulletin. 67, 342 (1988)
  27. J. Surbrahmanyam and M. Vijayakumar, J. Mat. Sci. 27, 6249 (1992) https://doi.org/10.1007/BF00576271