• 제목/요약/키워드: Diffusion Flame

검색결과 558건 처리시간 0.022초

이중 동축 확산화염의 형상 및 배출 특성 (Measurement of soot concentration in flames using laser-induced incandescence method)

  • 정종수;이교우
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.49-57
    • /
    • 1999
  • An experimental study on double-concentric diffusion flame has been carried out in order to investigate the shape, the flame length, and the other characteristics of the flame. Flow visualization of the flame by the $TiO_2$ particles and also the emission measurements are conducted. The commercial grade LP gases are used as fuel. The inverse diffusion flames are formed at the center when the central air flow rate is about 0.1 L/min. With a larger flow rate of the central air jet than 0.2 L/min the flame turns to be an annular-shaped flame, which is very bright. When the central air flow rate increases over 2.4 L/min, the flame turns to blue and the flame tips are opened because of the lifting of the inner part of the flame. Because of this lifting and the incomplete combustion, the CO emission increases abruptly from 25 ppm to more than 150 ppm. On the contrary, the NOx emission is decreased.

  • PDF

미소중력환경에서의 고체벽면근방 층류확산염내 매연입자의 열영동 부착 (Thermophoretic deposition of soot particles in laminar diffusion flame along a solid wall in microgravity)

  • 최재혁;후지타오사무;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.19-24
    • /
    • 2007
  • The deposition behavior of soot particles in a diffusion flame along a solid wall was examined experimentally by getting rid of the effect of natural convection utilizing microgravity environment. The microgravity environment was realized by using a drop tower facility. The fuel for the flame was an ethylene ($C_2H_4$) and the surrounding oxygen concentration 35% with the surrounding air velocity of $V_a$=2.5, 5, and 10 cm/s. Laser extinction method was adopted to measure the soot volume fraction distribution between the flame and burner wall. The results show that observation of soot deposition in normal flame was difficult from buoyancy and the relative position of flame and solid surface changes with time. The soot particle distribution region moves closer to the surface of the wall as the surrounding air velocity is increased. And the experiments determined the trace of the maximum soot concentration line. It was found that the distance between soot line and flame line is around 5 mm. That is, the soot particle near the flame zone tends to move away from flame zone because of thermophoretic force and to concentrate at a certain narrow area inside of the flame, finally, to adhere the solid wall.

  • PDF

난류확산화염의 화염구조와 연소특성에 관한 실험적 연구 (An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I))

  • 최병륜;장인갑;최경민
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1) (Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I))

  • 최병륜;이중성
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

예혼합화염 영역에서 확산화염의 불안정성에 관한 연구 (Diffusion-flame instability in the premixed-flame regime)

  • 이수룡;김종수
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1218-1229
    • /
    • 1997
  • The diffusional-thermal instability of diffusion flames in the premixed-flame regime is studied in a constant-density two-dimensional counterflow diffusion-flame configuration, to investigate the instability mechanism by which periodic wrinkling, travelling or pulsating of the reaction sheet can occur. Attention is focused on flames with small departures of the Lewis number from unity and with small values of the stoichiometric mixture fraction, so that the premixed-flame regime can be employed for activation-energy asymptotics. Cellular patterns will occur near quasisteady extinction when the Lewis number of the more completely consumed reactant is less than a critical value( ~ =0.7). Parametric studies for the instability onset conditions show that flames with smaller values of the Lewis number and stoichiometric mixture fraction and with larger values of the Zel'dovich number tend to be more unstable. For Lewis number greater than unity, near-extinction flame are found to exhibit either travelling instability or pulsating instability.

제트 확산화염의 연소특성과 매연생성에 관한 연구 (Combustion Characteristics and Soot Formation in a Jet Diffusion Flame)

  • 이교우;백승욱
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-Flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.863-870
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame has been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distribution in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by particles. A laser extinction method was used to measure the soot volume fraction and laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

레이저 및 열전대를 이용한 동축류 확산화염에서의 매연입자 측정에 관한 연구 (A Study on the Soot Particle Measurement in Co-flow Diffusion Flame Using a Laser Diagnostics and a Thermocouple)

  • 한용택;이기형;이원남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1267-1273
    • /
    • 2004
  • The temperature and soot particle measurement technique in a laminar diffusion flame have been studied to investigate the characteristics of soot particle with temperature using a co-flow burner. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple and the soot particles were detected were detected by LEM/LIS techniques. In these measurement, soot volume fraction, number density and soot diameters were analyzed experimentally. As a results, the spacial distributions of particle volume fraction, soot diameter, and number density are mapped throughout the flame using the Rayleigh theory for the scattering of light by absorbing particles. A laser extinction method was used to measure the soot volume fraction and Laser induced scattering method was used to measure the soot particle diameter and number density. Also, we measured temperature without the effect of soot particles attached to the thermocouple junction, which is close to the nozzle. In this result, we found that upstream zone has a unstable flowing in co-flow diffusion flame and the y-axis temperature of flame has a uniform temperature distribution in the most soot volume fraction zone.

  • PDF

등유-산소 층류 확산화염의 길이 변화 특성에 관한 실험적 연구 (Experimental Investigations of the Characteristics of the Length Variation of Kerosene-Oxygen Laminar Diffusion Flames)

  • 이수한;이종원;박설현
    • 한국화재소방학회논문지
    • /
    • 제32권6호
    • /
    • pp.22-27
    • /
    • 2018
  • 등유-산소 동축류 확산화염 버너에서 연료의 유량, 버너 외축에 공급되는 산화제의 온도, 불활성가스로 희석된 산화제의 특성이 화염 길이 변화 특성에 미치는 영향을 고찰해 보았다. 각 실험 조건에서 생성된 동축류 확산 화염은 쉴리렌 카메라를 이용하여 촬영한 뒤 디지털 이미징 프로세싱 기법을 적용하여 그 길이를 측정하였다. 실험결과를 통해 측정된 화염길이는 등유 연료의 유량과 산화제의 온도에 비례하여 증가하는 것을 확인할 수 있었다. 아울러, 산화제에 첨가되는 불활성가스의 희석량이 증가할수록 화염 길이는 증가하는 하였고, 특히 동일한 산소 농도에서 질소가스로 희석된 경우가 헬륨가스로 희석된 경우에 비해 화염길이가 큰 폭으로 증가하였다. 이는 유체의 점성 저항에 영향을 미치는 불활성가스의 희석이 화염 길이 변화에 영향을 미치는 주요 메카니즘이기 때문으로 판단된다.

상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구 (Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames)

  • 오상훈;박정;권오붕
    • 한국연소학회지
    • /
    • 제17권3호
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.