• Title/Summary/Keyword: Diffusion Flame

Search Result 558, Processing Time 0.028 seconds

A Study on the Combustion Characteristics of Turbulent Diffusion Flame Stabilized by Bluff Body (보염기에 의해 안정되는 난류확산화염의 연소특성에 관한 연구)

  • An, J.G.;Song, K.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • The flame stabilization and the combustion characteristics of diffusion flame formed in the wake of a cylindrical bluff body with fuel injection are studied. With the turbulence generator, the flame stability limits and ion currents were measured and analyzed. The results from this experimental study are summarized as follows. The region with highest average value of ion currents in the middle of flame is moved to the upstream side by the turbulent components of main stream. The flame mass with partially active reaction is moved fast for uniform flow and turbulence generator G3, but the flame mass with relatively slow reaction is moved slowly for turbulence generator G1. If the turbulence generator with strong turbulent component is installed, the turbulent time scale is increased with movement from main stream side to recirculation zone as well as the flame stability limits is deteriorated. Though the special dominant frequency is not appeared in the eddy which exists in flame, high frequency characteristics are appeared in uniform flow and turbulence generator G3, and low frequency characteristics are appeared in uniform flow, turbulence generator G3 and G1.

  • PDF

Effects of EGR and Premixedness on NO Formation of Methane/Air Flames (EGR 및 예혼합 정도가 메탄/공기 화염의 NO 생성에 미치는 영향)

  • Lee, Won-Nam;Lee, Woong-Jae
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.63-74
    • /
    • 1999
  • The effects of EGR and premixedness on NO formation have been numerically investigated. The flame structure is classified into three categories; premixed flame($=1)$, rich/lean premixed flame(${\alpha}=0.6$ and 0.8) and diffusion flame(${\alpha}=0$). NO formation/destruction mechanisms are assorted to thermal, reburn and Fenimore mechanisms. The temperature of unburned gas is arranged to 298 and 500 K to have access to the condition in a real internal combustion engine. The results show that all three NO formation/destruction reaction rates in the fuel rich flame zone could be decreased by EGR for rich/lean premixed flames, while those in the fuel lean flame zone are not significantly changed. Near the stagnation plane, however, only the thermal NO reaction rate is decreased. The contribution of reburn and Fenimore mechanisms for the net NO production becomes less significant as the premixedness of a flame increases. The larger amount of NO reduction with EGR is expected under the higher temperature and/or higher fuel/air premixedness conditions due to the increased contribution of the thermal mechanism. The role of Fenimore and reburn mechanisms could be important for rich premixed and diffusion flames; therefore, the effect of EGR on NO reduction could vary with fuel/air premixedness. The premixedness of a partially premixed flame changes the flame structure and could affect the NO production characteristics.

  • PDF

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames (메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

Preparation of TiO2 Photocatalysts by Diffusion Flame Reactor and Its Application on Photo-degradation of Phenol and Toluene (확산화염 반응기를 이용한 TiO2 광촉매 제조 및 페놀 및 톨루엔 광분해 응용)

  • Choi, Sang-Keun;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.117-124
    • /
    • 2002
  • We prepared the nano-sized $TiO_2$ particles by the diffusion flame reactor and investigated the effects of several process variables on the generation and transport properties of $TiO_2$ particle. As the length from the tip of diffusion flame reactor increases, the size of $TiO_2$ particle increases by the coagulation between particles. The structure of $TiO_2$ particles prepared is almost found to be anatase. It was found that the $TiO_2$ particle size depends more largely on the change of reactor temperature than on the change of inlet $TiCl_4$ concentration. By the photo-degradation experiment of phenol and toluene with the prepared $TiO_2$ particles, we found that the photo-degradation efficiencies of phenol and toluene change, depending on the process variables such as size of $TiO_2$ photocatlysts, concentration of phenol or toluene. Degradation efficiencies of phenol and toluene was above 90% in our experiments in 60 minutes.

  • PDF

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame (비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사)

  • Lee, Chang-Eon;O, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.

Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame (대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석)

  • Jeong, Jae In;Hwang, Jun Young;Lee, Bang Weon;Choi, Mansoo;Chung, Suk Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.