• Title/Summary/Keyword: Diffusion Coefficient

Search Result 1,253, Processing Time 0.03 seconds

MRI Findings of COVID-19 Associated Acute Necrotizing Encephalopathy in Two Pediatric Patients: Case Report and Literature Review (소아에서 발생한 COVID-19 연관 급성 괴사성 뇌병증의 MRI 소견: 2건의 증례 보고 및 문헌 고찰)

  • Yoon Yeong Choi;Ha Young Lee;Myung Kwan Lim;Young Hye Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.3
    • /
    • pp.682-690
    • /
    • 2024
  • Acute necrotizing encephalopathy (ANE) is a rare immune-mediated complication of a viral infection commonly involving the bilateral thalamus and has been reported mainly in children. Here, we describe the MRI findings of coronavirus disease 2019 (COVID-19)-associated ANE in two pediatric patients, including a 7-year-old girl with fever and mental change, and a 6-year-old girl with fever and generalized seizures. Brain MRI revealed symmetrical T2 fluid attenuated inversion recovery high-signal intensity lesions in the bilateral thalamus with central hemorrhage. In one patient, the thalamic lesions showed a tri-laminar pattern on the apparent diffusion coefficient map. This report emphasizes the importance of creating awareness regarding these findings in patients with COVID-19, particularly in children with severe neurological symptoms. Furthermore, it provides a literature review of several documented cases of COVID-19 presenting with bilateral thalamic hemorrhagic necrosis, suggesting a diagnosis of ANE.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.

The Characteristics of Hydrodynamic Dispersion in a Horizontally Heterogeneous Fractured Rock Through Single Well Injection Withdrawal Tracer Tests (수평적으로 불균질한 단열암반층에서 단공주입양수 추적자시험에 의한 수리분산특성)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Kim, Byung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2006
  • Single well injection withdrawal tracer tests with bromide were carried out at two wells developed in a horizontally heterogeneous fractured rock. The hydraulic conductivity of TW-1 well was 5 times larger than TW-2 well, and the average linear velocity of TW-2 well was 1.8 times faster than TW-1 well. The difference of hydrodynamic dispersions of two wells in the fractured rock was studied with the analysis of concentration breakthrough curves and cumulative mass recovery curves of bromide with withdrawal time, and the estimation of average travel distance, pore velocity, longitudinal dispersivity and longitudinal dispersion coefficient. The average travel distances of bromide were estimated to be 3.00 m in TW-1 well and 5.62 m in TW-2 well. The average pore velocities for the injection/withdrawal phase were estimated to be $4.31\;{\times}\;10^{-4}\;m/sec$ in TW-1 well and $8.08\;{\times}\;10^{-4}\;m/sec$ in TW-2 well. Average travel distance and pore velocity were higher in TW-2 well because of small effective porosity. Longitudinal dispersivities were estimated to be 28.73 cm in TW-1 well and 18.49 cm in TW-2 well, and bromide transport was 1.55 times faster in TW-1 well. Longitudinal dispersion coefficients were estimated to be $5.14\;{\times}\;10^{-6}\;m^2/sec$ in TW-1 well and $6.06\;{\times}\;10^{-6}\;m^2/sec$ in TW-2 well, and diffusion area was 1.18 times larger in TW-2 well.

A Method to Quantify Breast MRI for Predicting Tumor Invasion in Patients with Preoperative Biopsy- Proven Ductal Carcinoma in Situ (DCIS) (유방 자기공명영상법을 이용한 수술 전 관상피내암으로 진단된 환자의 침윤성 유방암을 예측하는 정량적 분석법)

  • Ko, Myung-Su;Kim, Sung Hun;Kang, Bong Joo;Choi, Byung Gil;Song, Byung Joo;Cha, Eun Suk;Kiraly, Atilla Peter;Kim, In Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2013
  • Purpose : To determine the quantitative parameters of breast MRI that predict tumor invasion in biopsy-proven DCIS. Materials and Methods: From January 2009 to March 2010, 42 MRI examinations of 41 patients with biopsy-proven DCIS were included. The quantitative parameters, which include the initial percentage enhancement ($E_1$), peak percentage enhancement ($E_{peak}$), time to peak enhancement (TTP), signal enhancement ratio (SER), arterial enhancement fraction (AEF), apparent diffusion coefficient (ADC) value, long diameter and the volume of the lesion, were calculated as parameters that might predict invasion. Univariate and multivariate analyses were used to identify the parameters associated with invasion. Results: Out of 42 lesions, 23 lesions were confirmed to be invasive ductal carcinoma (IDC) and 19 lesions were confirmed to be pure DCIS. Tumor size (p = 0.003; $6.5{\pm}3.2$ cm vs. $3.6{\pm}2.6$ cm, respectively) and SER (p = 0.036; $1.1{\pm}0.3$ vs. $0.9{\pm}0.3$, respectively) showed statistically significant high in IDC. In contrast, E1, Epeak, TTP, ADC, AEF and volume of the lesion were not statistically significant. Tumor size and SER had statistically significant associations with invasion, with an odds ratio of 1.04 and 22.93, respectively. Conclusion: Of quantitative parameters analyzed, SER and the long diameter of the lesion could be specific parameter for predicting invasion in the biopsy-proven DCIS.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

Electrochemical Characteristic on Hydrogen Intercalation into the Interface between Electrolyte of the 0.1N H2SO4and Amorphous Tungsten Oxides Thin Film Fabricated by Sol-Gel Method (졸-겔법으로 제조된 비정질의 텅스텐 산화물 박막과 황산 전해질 계면에서 일어나는 수소의 층간 반응에 대한 전기화학적 특성)

  • Kang, Tae-Hyuk;Min, Byoung-Chul;Ju, Jeh-Beck;Sohn, Tae-Won;Cho, Won-Il
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1078-1086
    • /
    • 1996
  • The peroxo-polytungstic acid was formed by the direct reaction of tungsten powder with the hydrogen peroxide solution. Peroxo-polytungstic powder were prepared by rotary evaporator using the fabricated on to ITO coated glass as substrate by dip-coating method using $2g/10mL(W-IPA/H_2O)$ sol solution. A substrate was dipped into the sol solution and after a meniscus had settled, the substrate was withdrawn at a constant rate of the 3mm/sec. Thicker layer could be built up by repeated dipping/post-treatment 15 times cycles. The layers dried at the temperature of $65{\sim}70^{\circ}C$ during the withdrawn process, and then tungsten oxides thin film was formed by final heating treatment at the temperature of $230{\sim}240^{\circ}C$ for 30min. A linear rotation between the thickness of thin film and the number of dipping/post-treatment cycles for tungsten oxides thin films made by dip-coating was found. The thickness of thin film had $60{\AA}$ after one dipping. From the patterns of XRD, the structure of tungsten oxides thin film identified as amorphous one and from the photographs of SEM, the defects and the moderate cracks were observed on the tungsten oxides thin film, but the homogeneous surface of thin films were mostly appeared. The electrochemical characteristic of the $ITO/WO_3$ thin film electrode were confirmed by the cyclic voltammetry and the cathodic Tafel polaization method. The coloring bleaching processes were clearly repeated up to several hundreds cycles by multiple cyclic voltammetry, but the dissolved phenomenon of thin film revealed in $H_2SO_4$ solution was observed due to the decrease of the current densities. The diffusion coefficient was calculated from irreversible Randles-Sevick equation from the data obtained by the cyclic voltammetry with various scan rates.

  • PDF

Characteristics of Electrode Potential and AC Impendance of Perchlorate Ion-Selective Electrodes Based on Quaternary Phosphonium Salts in PVC Membranes (제4급 인산염을 이용한 과염소산 이온선택성 PVC막 전극의 전극전위와 AC 임피던스 특성)

  • 안형환
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.230-239
    • /
    • 1999
  • Perchlorate ion-selective electrodes in PVC membranes that respond linearly to concentration 106 M were developed by incorporating the quaternary phosphonium salts as a canier. The effects of the chemical structure, the contents of canier, the kind of plasticizer and the membrane thickness on electrode characteristics such as the electrode slope, the linear respone range and the detection limit were studied. With this results, the detectable pH range, selectivity coefficients and AC impedance characteristics were compared and investigated. The perchlorate ion substituents of the quaternary phosphonium salts like tetraoctylphosphonium perchlorate (TOPP) , tetraphenylphosphonium perchlorate(TPPP), and tetrabutylphosphonium perchlorate(TBPP) as a canier were used. The electrode characteristics were better in the ascending order of TBPP < TPPP < TOPP, with the increase of carbon chain length of the alkyl group. Dioctylsebacate(OOS) was best as a plasticizer, the canier contents were better with 11.76 wt% and the optimum membrane thickness was 0.19 mm. Under the above condition, the electrode slope was 56.58 mV/$^P{ClO}_4$,the linear response range was $10^{-1}$\times$10^{-6}$ M, the detection limit was 9.66 x $10^{-7}$ M. The performance of electrode was better than Orion electrode. The electrode potential was stable within the pH range from 3 to 11. The order of the selectivity coefficients for the perchlorate ion was sol < F < Br < 1. With the result of impedance spectrum, it was found that the equivalent circuit for the electrode could be expressed by a series combination of solution resistance, parallel circuit consisting of the double layer capacitance and bulk resistance and Warburg impedance. And solution resistance was almost not appeared and Warburg impedance was highly appeared by diffusion. Then Warburg coefficient was 1.32$\times$$10^74 $\Omega$ $\cdot$ ${cm}^2/s^{1/2}$.

  • PDF

Reduction and Equilibrium of Vanadium-Diethylenetriamine Pentaacetates at Mercury Electrode in Aqueous Solution (수용액중의 수은전극에서 바나듐-디에틸렌트리아민 펜타아세트산염의 환원 및 평형연구)

  • Ki-Suk Jung;Se Chul Sohn;Young Kyung Ha;Tae Yoon Eom;Sock Sung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 1989
  • Reduction and equilibrium of vanadium-DTPA (DTPA = diethylenetriaminepentaacetic acid, $H_5A$) complexes at mercury electrodes are studied in 0.5M $NaClO_4$ aqueous solution at 3.2 < pH < 10.5 and 25$^{\circ}$C. At 3.2 < pH < 5.9, the reduction reaction is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}HA^{2-}$, while at 5.9 < pH < 10.5 it is $V{\cdot}A^{2-}+H^-+e^-=V{\cdot}A^{3-}$. The stability constants of $V{\cdot}HA^{2-}$ and $V{\cdot}A^{3-}$ are found to be $6.46{\times}10^{9}$ and $3.09{\times}10^{14}$, respectively. V(IV)-DTPA undergoes stepwise complexation as $VO^{2+}+H_2A^{3-}=VO{\cdot}HA^{2+}H^{+}$ and $VO{\cdot}HA^{2-}=VO{\cdot}A^{3+}+H$, where acidity constant of $VO{\cdot}HA^{2-}$- is pKa = 7.15. Stability constants of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $1.41{\times}10^{14}$ and $3.80{\times}10^{17}$, respectively. It is detected that $VO^{2+}-DATA$ is reduced irreversibly to $VO^{2-}$ with the transfer coefficient of $\alpha$ = 0.43. At more cathodic overpotential, the reduction is stepwise as V(IV)${\to}$V(III)${\to}$V(II). The first one corresponds to $VO{\cdot}HA^{2-}+e^{-}{\to}VO{\cdot}HA{3+}$ at 3.2 < pH < 7.2 and $VO{\cdot}A^{3-}+e^{-}{\to}VO{\cdot}A^{4-}$ at 7.2 < pH < 10.5. The second is identical to that of V(III). Diffusion coefficients of $VO{\cdot}HA^{2-}$ and $VO{\cdot}A^{3-}$ are found to be $(9.0{\pm}0.3){\times}10^{-6}cm^2/s$ and $(5.9{\pm}0.4){\times}10^{-6}cm^2/ses$, respectively.

  • PDF