• Title/Summary/Keyword: Diffusion Bonding

Search Result 265, Processing Time 0.024 seconds

Analysis of superplastic forming/diffusion bonding process using a finite element method (유한요소법을 이용한 초소성 성형/확산접합 공정해석)

  • Song, J.S.;Kim, Y.H.;Hong, S.S.;Kang, Y.K.;Lee, J.H.;Kwon, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.265-268
    • /
    • 2006
  • The superplastic forming/diffusion bonding is widely accepted as an advanced technique for forming complex industrial components. But the superplastic forming process requires much forming time and generates excessive thinning thickness distribution of formed part. Superplastic in materials is only achieved in a narrow range of strain-rate with optimum value unique to each material. In this study, finite element analysis for surperplastic forming/diffusion bonding (SPF/DB) processes of three-sheet and four-sheet sandwich parts. From this study, forming analysis have offered a lot of information for developing the forming process.

  • PDF

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.

Fabrication and Testing of Injection Mold for Cosmetic Container with Conformal Cooling Channels Using Vacuum Diffusion Bonding (진공확산접합을 이용한 형상적응형 냉각채널을 가진 화장품 용기용 사출금형의 제작 및 시험사출)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.92-98
    • /
    • 2020
  • In this study, an injection mold with conformal cooling channels was designed and manufactured for use in the production of a thick plastic cosmetic container that required high gloss surfaces. A cooling analysis verified the design of the conformal cooling channel for the cosmetic container, and also showed that the cooling efficiency was superior to that of the straight cooling channel. Slide cores designed with the conformal cooling channel were manufactured using the Layers Parting method and vacuum diffusion bonding. Subsequent test injection and quality inspection showed no problem in the appearance and dimensional accuracy of the produced product. The cycle time for product production was about 110 seconds, sufficient for mass production.

Process Design of Superplastic Forming/Diffusion Bonding by Using Step-by-step Pressurization (단계적 가압을 이용한 초소성 성형/확산접합의 공정설계)

  • Song, J.S.;Kang, Y.K.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.239-243
    • /
    • 2007
  • Superplastic forming/diffusion bonding(SPF/DB) has been widely used in the automotive and aerospace industry since it has great advantages to produce very light and strong components. Finite element method(FEM) is used to model the SPF/DB process of 3-sheet sandwich panel to predict the pressure-time curve and to analyze the process parameters. In order to eliminate defects of the part, a new pressurization scheme is proposed. Contrary to the conventional one-step pressurization, which causes the folding at the DB joint, two-step pressurization can eliminate the folding. Effect of pressurization cycle was investigated by using FE analysis and proper pressurization cycle is proposed.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2304-2309
    • /
    • 2008
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

  • PDF

Development of the Ag/Cu Ingots for Mokumegane Jewelry (모꾸메가네 장신구를 위한 은/동 접합 잉곳 소재 개발)

  • Song, Oh-Sung;Kim, Jong-Ryul;Kim, Myung-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Mokumegane is one of the sophisticated metal craft techniques enabling wood grain surface effect. To embody the mokumegane, an ingot of well-bonded stacked metal plates has been required. Traditionally prepared mokumegane ingots were bonded using charcoal which enables reduction atmosphere, but sometimes end up with collapse of bonding interface due to the lack of reliable process control. We proposed a systematic vacuum direct bonding process for ingots. First, we confirmed copper//copper homogeneous plate bonding at $900^{\circ}C$ by applying uniaxial press of 2.5kg. We observed 80min required to obtain 90%-bonding ratio and the diffusion coefficient would be enhanced up to 100 times due to surface effect. Second, by considering enhanced diffusion behavior, we also obtained optimum bonding condition in copper/silver heterogeneous plates that ensures 90%-bonding ratio at $700^{\circ}C$ for 10min with apply uniaxial press. A 7-layered copper/silver ingot is prepared successfully, and eventually the prototype mokumegane cases for mobile phone were fabricated with these ingot.

Effect of Bonding Condition on the Tensile Properties of Diffusion Bonded Haynes230 (고상확산접합된 Haynes230의 인장성질에 미치는 접합조건의 영향)

  • Kang, Gil-Mo;Jeon, Ae-Jeong;Kim, Hong-Kyu;Hong, Sung-Suk;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.76-83
    • /
    • 2013
  • This study investigated the effect of bonding temperature and holding time on microstructures and mechanical properties of diffusion bonded joint of Haynes230. The diffusion bonds were performed at the temperature of 950, 1050, and $1150^{\circ}C$ for holding times of 30, 60, 120 and 240 minutes at a pressure of 4MPa under high vacuum condition. The amount of non-bonded area and void observed in the bonded interface decreased with increasing bonding temperature and holding time. Cr-rich precipitates at the linear interface region restrained grain migration at $950^{\circ}C$ and $1050^{\circ}C$. However, the grain migration was observed in spite of short holding time due to the dissolution of precipitates to base metal in the interface region at $1150^{\circ}C$. Three types of the fracture surface were observed after tensile test. The region where the coalesce and migration of grain occurred much showed high fracture load because of base metal fracture whereas the region where those did less due to the precipitates demonstrated low fracture load because of interface fracture. The expected fracture load could be derived with the value of fracture area of base metal ($A_{BF}$) and interface ($A_{IF}$), $Load=201A_{BF}+153A_{IF}$. Based on this equation, strength of base metal and interface fracture were calculated as 201MPa and 153MPa, respectively.

A Study on Fabrication of Ti Matrix Composites by Liquid Phase Diffusion Bonding (액상확산접합법을 이용한 Ti 금속기복합재료 제조에 관한 연구)

  • Kim, Gyeong-Mi;U, In-Su;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • The purpose of this study is to develop the processing techniques of Fiber Reinforced Metal by Liquid Phase Diffusion Bonding method with SiC fiber as a reinforcing material and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements in reaction and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements is reaction zone among CP Ti/Ti-15wt%Cu-20wt%Ni(TCN20)/SiC long fiber were investigated by Optical Microscope, SEM/EDX, EPMA, X-ray and AES. The results obtained in this study are as follows. 1) When Ti matrix composite materials are fabricated under the bonding condition of 1273Kx1200sec, the SiC long fiber was the most suitable reinforcing material for Ti matrix composite materials. 2) With SiC long fiber under same condition, a TiC layer(1.0-1.6$\mu\textrm{m}$) was observed on the surface of SiC long fiber. 3) Liquid Phase Diffusion Bonding has shown the feasibility of production of Ti matrix composite materials.

  • PDF

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF