• Title/Summary/Keyword: Diffusion Bonded Powder

Search Result 13, Processing Time 0.026 seconds

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.

HIP Diffusion Bonding of Two Types of Superalloys for Engine Blisk Applications (엔진 블리스크 제조를 위한 초내열합금 이종재의 HIP Diffusion Bonding)

  • 나영상;황형철;염종택;권영삼;박노광
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2003
  • HIP diffusion bonding of Ni-based superalloys, cast Mar-M247 (MM247) and Udimet 720 (U720) powder, was experimentally and numerically studied. Subsolvus HIP treatment was optimized by investigating the variations of high temperature tensile properties of HIP-bonded specimens with powder size, HIP'ing time, etc. While the tensile strength at high temperatures showed no detectable changes, the tensile elongation and reduction in area were slightly increased as the powder size decreased from -140 mesh to -270 mesh. While as-HIP'ed U720 showed a high tensile strength comparable to that of lorded U720 alloy, the HIP diffusion-bonded specimen showed a strength lower than the forged U720 alloy and the cast MM247 alloy The increase of HIP'ing tune from 2 hours to 3 hours resulted in a rapid risc of tensile strength and elongation due to the disappearence of microvoids in the cast MM247. FEM simulation for HIP process was conducted by applying the McMeeking micromechanical model, which uses power-law creep model as constitutive equations. ABAQUS user subroutine CREEP with an implemented microscopic model was used for the simulation. Numerical simulation was shown to be essential for the near-net shape manufacturing as well as the HIP process optimization.

The Mixing Ratio Effect of Insert Metal Powder and Insert Brazing Powder on Microstructure of the Region Brazed on DS Ni Base Super Alloy (일방향응고 Ni기 초내열합금 천이액상화산접합부의 미세조직에 미치는 모재와 삽입금속 분말 혼합비의 영향)

  • Ye Chang-Ho;Lee Bong-Keun;Song Woo-Young;Oh In-Seok;Kang Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.99-105
    • /
    • 2005
  • The mixing ratio effect of the GTD-111(base metal) powder and the GNI-3 (Ni-l4Cr-9.5Co-3.5Al-2.5B) powder on TLP(Transient Liquid Phase) bonding phenomena and mechanism was investigated. At the mixing ratio of the base metal powder under $50wt\%$, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solid phases in the bonded interlayer grew epitaxially from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The number of grain boundaries farmed at the bonded interlayer corresponded with those of base metal. At the mixing ratio above $60wt\%$, the base metal powder melted only at the surface of the powder and the amount of the base metal dissolution was also less at the initial time. Nuclear of solids firmed not only from the base metal near the bonded interlayer but also from the remained base metal powder in the bonded interlayer. Finally, the polycrystal in the bonded interlayer was formed when the isothermal solidification finished. When the isothermal solidification was finished, the contents of the elements in the boned interlayer were approximately equal to those of the base metal. Cr-W borides and Cr-W-Ta-Ti borides formed in the base metal near the bonded interlayer. And these borides decreased with the increasing of holding time.

Joining of AIN Ceramics to Metals: Effect of Reactions and Microstructural Developments in the Bonded Interface on the Joint Strength (질화알루미늄과 금속간 계면접합에 관한 연구: 계면반응과 미세구조 형성이 접합체 강도에 미치는 영향)

  • 박성계
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.196-204
    • /
    • 1997
  • Joining of AIN ceramics to W and Cu by active-metal brazing method was tried with use of (Ag-Cu)-Ti alloy as insert-metal. Joints were produced under various conditions of temperature, holding time and Ti-content in (Ag-Cu) alloy Reaction and microstructural development in bonded interface were investigated through observation and analysis by SEM/EDS, EPMA and XRD. Joint strengths were measured by shear test. Bonded interface consists of two layers: an insert-metal layer of eutectic Ag- and Cu-rich phases and a reaction layer of TiN. Thickness of reaction layer increases with bonding temperature, holding time and Ti-content of insert-metal. It was confirmed that the growth of reaction layer is a diffusion-controlled process. Activation energy for this process was 260 KJ/mol which is lower than that for N diffusion in TiN. Maximum shear strength of 108 MPa and 72 MPa were obtained for AIN/W and AIN/Cu joints, respectively. Relationship between processing variables, joint strength and thickness of reaction layer was also explained.

  • PDF

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

Effects of heating rate on the bonded interlayer in base metal powder mixture used transient liquid phase diffusion bonded Ni-base superalloy (모재 분말 혼합 삽입재를 이용한 니켈기 초내열합금의 천이액상확산접합에 있어서 가열속도가 접합부에 미치는 영향)

  • 김성욱;장중철;김재철;이창희
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.48-50
    • /
    • 2004
  • TLP 접합 공정에서 모재와 삽입금속 사이에서의 확산을 통하여 액상 삽입금속은 고온에서 등온으로 유지 시 등온 응고된다. D.S.Duvall은 느린 가열시 매우 빠른 속도로 가열 시 보다 낮은 온도에서 dissolution이 완료되고 응고가 발생할 것으로 예상하였다. (중략)

  • PDF

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

Nominally Equivalent Powders for P/M Steels: Analysis of Response to Sintering and Differences at Various C Content

  • Bocchini, G. F.;Ienco, M. G.;Pinasco, M. R.;Stagno, E.;Baggioli, A.;Gerosa, R.;Rivolta, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.405-406
    • /
    • 2006
  • Raw materials from different sources, produced by a given process and having equal chemical composition, are supposed to be equivalent. The differences in sintering behavior have been investigated on P/M steels obtained from four diffusion-bonded powders (Fe + Ni + Cu + Mo) on atomized iron base, at the same alloy contents. Two levels of carbon and two sintering conditions have been investigated. Dimensional changes, C content, hardness, microhardness pattern, universal hardness, fractal analysis, pore features, microstructure features, and rupture strength have been compared to characterize different raw materials. The results show that the claimed equivalence is not confirmed by experimental data.

  • PDF

Liquid Phase Diffusion Bonding Procedure of Rene80/B/Rene80 System -Liquid Phase Diffusion Bonding Using B Powder Coating Method (Rene80/B/Rene80계의 액상확산 접합과정 -B분말 도포법을 이용한 액상확산접합)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.132-138
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using boron(B) as an insert material, where B has high diffusivity and higher melting point as an insert material. Bonding procedure and bonding mechanism of Rene80/B/Rene80 joint were investigated. As results, liquid metal was produced by solid state reaction between base metal and insert material on bonding zone. The liquid metal was produced preferentially at the grain boundary. Except for production of liquid metal, other bonding procedure was nearly same as TLP(Transient Liquid Phase) bonding. Bonding time, however, was reduced compared to prior result of TLP bonding. By bonding S.4ks at l453K, Ren80/B/Rene80 joint was isothermally solidified and homogenized where thickness of insert material was 7.5.mu.m.

  • PDF

Study of Elastic Moduli of Sintered Low Alloy Steels by Acoustic Pulse Method

  • Hirose, Norimitsu;Oouchi, Kazuya;Fujiki, Akira;Asami, Junichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.387-388
    • /
    • 2006
  • The influence of porosity (P) on Young's modulus (E) and Poisson's ratio $(\upsilon)$ of sintered steels produced from four types of steel powders was investigated. The values of E and $(\upsilon)$ depend mainly on the value of P, and those were a little affected by alloying elements. The relationships between E, $(\upsilon)$, and P were described as following equations: $E\;=\;E_0{\cdot}(1\;-\;k_E{\cdot}P)^2$ and $\upsilon\;=\;({\upsilon}_0\;-\;\upsilon_{sub}){\cdot}(1\;-\;k_{\upsilon}{\cdot}P)2+\upsilon_{sub}$, where subscript 0 means P = 0, and $k_E,\;k_{\upsilon}$ and ${\upsilon}_{sub}$ are empirical constants. These approximate equations showed good agreement with empirical results.

  • PDF