• Title/Summary/Keyword: Diffusion Angle

Search Result 202, Processing Time 0.036 seconds

An experimental study of the overall characteristics in an aero-valved pulsating combustor (空氣밸브型 脈動燃燒器의 特性에 관한 實驗的 硏究)

  • 오상헌;최병륜;임광열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.271-278
    • /
    • 1987
  • The experimental study was carried out to investigate the pressure fluctuation, operating frequency, noise emission and combustion characteristics in an aero-valved pulsating combustor. Measurements of the pressure fluctuation, mean temperature and ion current inside the combustion chamber indicate that combustion phenomena are characteristically similar to those in the diffusion flame. The measured frequency schedue indicates that the acoustic theory of the quarter wave tube can be approximated to give the operating frequency, but correction factor must be involved to estimate the correct operating frequency. The spectral behavior of the noise emission exhibits that frequency bands with high noise intensity are narrowly restricted to the neighborhood of the operating frequency signalling the low-frequency combustion characteristics of the pulsating combustor. Measurements of the operating characteristics as variation of the fuel nozzle diameter and injection angle with 4 fuel nozzles have been made, and it was found that the system produced the stable operating conditions up to the turn down ratio of 3 when the fuel nozzle diameter is 1.2mm, and the optimum fuel injection angle is thought to be in the neighborhood of 30.deg. radially.

Recent progress in the theoretical understanding of relativistic electron scattering and precipitation by electromagnetic ion cyclotron waves in the Earth's inner magnetosphere

  • Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.45-60
    • /
    • 2019
  • The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.

Numerical Analysis of the Effect of a Three-Dimensional Baffle Structure with Variable Cross-Section on the Parallel Flow Field Performance of PEMFC

  • Xuejian Pei;Fayi Yan;Jian Yao;He Lu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • In this study, a 3D model of the proton exchange membrane fuel cell is established, and a new 3D baffle structure is designed, which is combined with the parallel flow field and then optimized by numerical simulation methods. The number of baffles and the cross-sectional trapezoidal base angle are taken as the main variables, and their impacts on the performance indexes of the cathode side are analyzed. The results show that the 3D baffle can facilitate the convection and diffusion mass transfer of reactants, improve the uniformity of oxygen distribution, enhance the drainage capacity, and make the cell performance superior; however, too small angle will lead to excessive local convective mass flux, resulting in the decrease of the overall uniformity of oxygen distribution and lowering the cell performance. Among them, the optimal number of baffles and angle are 9 and 58°, respectively, which improves the net output power density by 10.8% than conventional flow field.

Optical Design of an Omnidirectional Illumination System Using an Ultra Wide Converter (초광각 변환기를 이용한 전방위 조명 광학계의 설계)

  • Juho Lee;Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • In exhibition spaces such as art museums, lighting should primarily illuminate the walls where exhibits are displayed rather than the floor. Commonly used LED lighting consists of an LED and a diffusion plate that closely resembles a Lambertian light source with uniform light distribution at every angle. This type of illumination focuses on the floor surface where normal incidence occurs. Consequently, this general illumination method is not well-suited for effectively lighting the wall surface. Specifically, to illuminate a wall, it is necessary to increase the light intensity in areas with a large incident angle in the light distribution. In response to this issue, our study proposes an illumination system that uses an ultra wide converter to adjust the divergence angle from the light source to 180 degrees.

A Study on the Characteristics of Plant Fiber Materials for Diffusion Tensor Imaging Phantom (확산텐서영상 팬텀 제작을 위한 식물섬유 재료의 특성에 관한 연구)

  • Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • The purpose of this study was to reconstruct diffusion tensor tractography (DTT) using stem of garlic and asparagus for in vitro phantom of diffusion tensor imaging (DTI), and to compare and evaluate the fractional anisotropy (FA) value and the apparent diffusion coefficient (ADC) value to determine whether it can be used as materials for in vitro phantoms. Among various plant fibers such as stem of garlic, palmae, cotton, asparagus, etc., stem of garlic and asparagus, which are considered to be the most suitable for making phantoms, and whose shape is considered to be the most suitable for making phantoms, were selected and tests were conducted. Holes were made in a plastic bucket at an angle of 0°, 30°, 60°, 90°, and 120°, then tubes were inserted. In the tube, asparagus and stem of garlic were inserted as far in as possible, and the inserted tube was inserted into the center of the heat bathed gelatin to harden. We were able to reproduce DTT images in asparagus and stem of garlic. Fiber tissues of asparagus and stem of garlic did not show complete connectivity, but the reconstructed images of DTT showed good connectivity. The FA values of asparagus in the tubes were 0.198 at 0° (straight), 0.207 at 30°, 0.187 at 60°, 0.231 at 90°, and 0.204 at 120°. In addition, the FA values of stem of garlic in the tubes were 0.235 at 0°, 0.236 at 30°, 0.216 at 60°, 0.218 at 90°, and 0.257 at 120°. The ADC values of asparagus in the tubes were 1.545 at 0°, 1.677 at 30°, 1.629 at 60°, 1.535 at 90°, and 1.725 at 120°. In addition, the ADC values of stem of garlic in the tubes were 1.252 at 0°, 1.396 at 30°, 1.698 at 60°, 1.756 at 90°, and 1.466 at 120°. For the best expressed DTT reconstruction image, it showed the longest connectivity in the straight line as we hypothesized. In addition, when comparing the FA values and ADC values of fiber tissues of stem of garlic and asparagus, FA value was generally higher in stem of garlic and ADC value was slightly higher in asparagus.

Analysis and Evaluation of Multi-view UCV(User Created Video) Service through Adjusting Camera Angle (카메라 앵글 조정 방식을 통한 다시점 UCV(User Created Video) 서비스 분석과 평가)

  • Sung, Bokyung;Ko, Ilju
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.39-47
    • /
    • 2014
  • Fast advancement and dynamic diffusion of Smart device make big change to personal user. They have been extended from consumer only watching video to prosumer recording and sharing User Created Video(UCV). With this reason, as a platform for various kind of content service. Especially, UCVs for the purpose of sharing experience are recorded from same event on limited time and space by some people. These are also produced by various cameras that has each angle similar like broadcasting videos. In this paper, we present multi-view characteristic of UCV and propose Multi-view UCV service that is watching UCVs from same event through adjusting camera angle. Through user satisfaction survey, we knew that adjusting camera angle is preferred for watching UCV including overlapping part more than linear watching.

The Study on the Bi-directional Ejection Air Curtain System for Blocking Smoke Diffusion in case of Tunnel Fire (터널 화재시 연기확산 차단을 위한 양방향 토출 에어커튼 시스템에 대한 연구)

  • Yang, Sang-Ho;Choi, Young-Seok;Kim, Jung-Yup;Kim, Nam-Goo;Kim, Kyung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • This paper presents a the study on air curtain system of top and bottom bi-directional jet air discharge for blocking the spread of smoke in case of tunnel fire. The five kinds different air curtains of A, B, C, D, and E of models for various performance tested after manufactured. A results of the various performance test obtained the best efficiency from E model air curtain. And optimize the injection angle of the air curtain nozzle through the three-dimensional computational fluid dynamics (CFD) analysis and analyzed the effects of external pressure of tunnel. and also single factor design have been applied. At present, our attention is focused on the velocity distribution(flow width and flow position) of 1.5m on the ground in tunnel. Also, analyzed the influence of draft in the tunnel. Detailed effects of discharge angle of air curtain and velocity at nozzle exit are discussed.

DESIGNING EXPERIENCE OF AUTOMOTIVE TURBOCHARGER IMPELLER FOR FLANK MILLING (Flank Milling 공법적용을 위한 자동차용 터보차져 임펠러의 설계체험)

  • Bang, J.C.;Shuripa, V.A.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • The performance of small-size impellers with ruled surfaces was investigated for flank milling over a wide speed range, using computational fluid dynamics analyses and gas bench tests. An impeller with a ruled surface was designed, manufactured, and tested to evaluate the effects of blade loading, the backsweep angle, and the relative velocity distribution on the compressor performance. The simulations and tests were completed using the same compressor cover with identical inlet and outlet channels to accurately compare the performance of the abovementioned impeller with a commercial impeller containing sculptured blades. Both impellers have the same number of blades, number of splitters, and shroud meridional profiles. The backsweep angles of the blades on the ruled impeller were selected to work with the same pinched diffuser as for a sculptured impeller. The inlet-to-exit relative velocity diffusion ratio and the blade loading were provided to maximize the flow rate and to minimize the surge flow rate. The design flow rate, rpm, were selected same for both impellers. Test results showed that for the compressor stage with a ruled impeller, the efficiency was increased by 0.32% with an extended surge margin without a reduction in the pressure ratio as compared to the impeller with the sculptured design. It was concluded that an increased relative velocity diffusion coupled with a large backsweep angle was an effective way to improve the compressor stage efficiency. Additionally, an appropriate blade loading distribution was important for achieving a wide operating range and higher efficiency.

Diffusion equation model for geomorphic dating (지형연대 측정을 위한 디퓨젼 공식 모델)

  • Lee, Min Boo
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.285-297
    • /
    • 1993
  • For the application of the diffusion equation, slope height and maximum slope angle are calculated from the plotted slope profile. Using denudation rate as a solution for the diffusion equation, an apparent age index can be calculated, which is the total amount of denudation through total time. Plots of slope angle versus slope height and apparent age index versus slope height are useful for determining relative or absolute ages and denudation rates. Mathematical simulation plots of slope angle versus slope height can generate equal denudation-rate lines for a given age. Mathematical simulations of slope angle versus age for a given slope height, for equal denudation-rate at a particular profile site, and for comparing to other sites having controlled ages.

  • PDF

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF