• Title/Summary/Keyword: Diffusion & transfer coefficient

Search Result 125, Processing Time 0.022 seconds

Sound Diffusion Control for the Localized Sound Image Using Time Delay (방향 정위된 음원에 시간지연을 이용한 확산감 제어에 관한 연구)

  • 김익형;정의필
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.135-138
    • /
    • 2001
  • Many researchers have developed the techniques of an efficient 3-D sound system based on the psycho-acoustics of spatial hearing with multimedia or virtual reality In this paper, we propose an idea for the improved 3-D sound system using conventional stereo headphones to obtain a better sound diffusion from the mono-sound recorded at an anechoic chamber. We use the HRTF (Head Related Transfer Function) for the sound localization and the wavelet filter bank with time delay for the sound diffusion. We investigate the effects of the 3-B sound depending on the length of time delay at lowest frequency band. Also the correlation coefficient of the signals between the left channel and the right channel is measured to identify the sound diffusion.

  • PDF

Effect of Electrolytic Condition on Composition of Zn-Co Alloy Plating (Zn-Co 합금도금의 조성에 미치는 전해조건의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.287-292
    • /
    • 2017
  • The electrodeposition of Zn on the automotive parts has been adapted However, because Zn electrodeposit needs to increase thickness for corrosion protection, it has problem of destruction of electrodeposit Zn-based electrodeposit have teen studied for corrosion protection and decreasing electrodeposit thickness. Especially; Zn-Co electrodeposit have much attention In this study, the Composition of Zn-Co electrodeposit in various manufacturing condition such as temperature, current density and electrolyte content was investigated to understand effect of electrolysis condition on Co content of specimen. The results were explained by cathode overvoltage and diffusion coefficient. As the current density increases, the electrolyte temperature decreases, and as the electrolyte concentration decreases, the overvoltage of the cathode increases. As the overvoltage of the cathode increases, the concentration polarization becomes more important than the activation polarization. Concentration polarization is determined by the diffusion of the mass transfer in the diffusion layer. In a constant concentration polarization, a large amount of elements with a large diffusion coefficient is diffused. That is, as the overvoltage of the cathode increases, the Zn content having a large diffusion coefficient increases.

Observation of Moisture Content in Wood at Non-Steady State

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.6
    • /
    • pp.599-604
    • /
    • 2009
  • For the search of unified law of moisture movement in wood, moisture distribution of Korean red pine at non-steady state was investigated. We assume that the equilibrium moisture content (EMC) in wood depends on only temperature and relative humidity, it can be control in temperature and humidity chamber. If temperature is constant and humidity or vapor pressure is changed with sin curve shape at adequate cycles, EMC in chamber can be changed as well with sin-curve shape. The setup condition of a non-steady state in humidity control chambers is a constant temperature at $20^{\circ}C$ and 15+10 sin ${\omega}t$ percent EMC. It can be found that the distribution of moisture in the specimen with varying relative humidity are illustrated various types. Moisture in wood is complicated and vibrates with the moisture sorption process. Considering a unified law of moisture movement in wood, it is considered that the most important fact is to search the method of precise diffusion & transfer coefficients.

  • PDF

Time-dependent Analysis of High Strength Concrete Using Material Characteristics Model (물성치 모델개발을 통한 고강도콘크리트의 시간의존 해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1096-1101
    • /
    • 2008
  • Concrete is shown the time dependent behavior after placing. The time dependent behavior of normal strength concrete that is used usually in present, were already examined closely lots of parameters by several investigators. however, high strength concrete is that the material characteristics are not definite and the experimental data are lacking. So, The goal of this study is to propose the material characteristics models, and to develop the routine of the time dependent behavior above 60 MPa. The thermal conductivity, the specific heat, the moisture diffusion coefficient, and the surface coefficient are proposed the suitable models through the parametric study. The structural element is used the 8-node solid element. The matrix equation is developed considering the transient heat transfer and moisture diffusion theory. The application of the time dependent behavior is used the finite differential method.

  • PDF

Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM ($^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발)

  • Kim, Young-Il;Bae, Byung-Uk;Kim, Kyu-Hyoung;Hong, Hyun-Su;Westerhoff, Paul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1123-1128
    • /
    • 2005
  • NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

Removal of Trihalomethane Using Activated Carbon (활성탄(活性炭)을 이용(利用)한 Trihalomethane의 제거(除去)에 관한 연구(研究))

  • Chung, Tai Hak;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.73-79
    • /
    • 1983
  • Activated carbon has been widely used in water and wastewater treatment for removal of trace organics. The objective of this study was to define adsorption characteristics of trihalomethane(THM) on granular activated carbon(GAC) surfaces by laboratory experiments. Synthetic samples were prepared by adding chloroform into distilled and deionized water. The experiments conducted were a batch run and isotherm studies with five different temperature-pH levels. Adsorption of THM on GAC at an equilibrium condition was well described by the Freundlich isotherm equation. Lower temperature favored the adsorption, but the effect of pH was negligible. Utilizing the results of a batch run and the isotherm results, three parameters, mass transfer coefficient, pore diffusion coefficient, and surface diffusion coefficient, were evaluated by comparing with simulation results of an adsorption model. The results also showed that the pore diffusion was much greater than the surface diffusion.

  • PDF

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Mass Transfer Phenomena in Polycondensation Reaction of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 축중합 반응에서 물질 전달 현상)

  • 이성진;정성일
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • The instantaneous removal of ethylene glycol is very important fur obtaining high molecular weight polymer because of the reversibility of the polycondensation reaction of poly(ethylene naphthalate)(PEN). In this study, we investigated the mass transfer phenomena in the thin film of PEN oligomer where the polycondensation reaction took place at 280$^{\circ}C$ and under 0.1mmHg. In case of less than 0.025cm film thickness the mass transfer resistance through the thin film of the polymer melt was not so high that the overall reaction rate was governed only by the polycondenstion reaction. Both the mass transfer model and the diffusion model predicted the experimenatal data well but the diffusion model showed faster reaction rate in the low molecular weight range than the mass transfer model . It was estimated from the two models that the diffusivity was 4.7${\times}$10$\^$-6/$\textrm{cm}^2$/sec and the mass transfer coefficient was 1.4 ${\times}$10$\^$-4/cm/sec both of which were smaller than In case of poly(ethylene terephthalate).

Parameter Estimation of Perillyl Alcohol in RP-HPLC by Moment Analysis

  • Row Kyung Ho;Lee Chong Ho;Kang Ji Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • Parameter estimations were made for the reversed-phase adsorption of perillyl alcohol (POH), a potent anti-cancer agent, on octadecylsilyl-silica gel (ODS). The average particle diameter of ODS was about $15\;{\mu}m$, and the particles were packed in the column $(3.9\;\times\;300mm)$. The mobile phase used was a mixture of acetonitrile and water, in which the acetonitrile ranged between 50 and $70\;(v/v\;\%)$. The first absolute moment and the second central moment were determined from the chromatographic elution curves by moment analysis. Experiments were carried out using POH solutions within the linear adsorption range. The fluid-to-particle mass transfer coefficient was estimated using the Wilson-Geankoplis equation. The axial dispersion coefficient and the intra particle diffusivity were determined from the slope and intercept of a plot of H vs $1/u_0$, respectively. The contributions of each mass-transfer step were axial dispersion, fluid-to-particle mass transfer, and intraparticle diffusion.

First-Order Mass Transfer in a Diffusion-Dominated (Immobile) Zone of an Axisymmetric Pore: Semi-Analytic Solution and Its Limitations (대칭형 다공성 매질의 확산주도 영역에 관한 1차 물질이동 방정식)

  • Kim, Young-Woo;Kang, Ki-jun;Cho, Jung-ho;Kabala, Zbigniew
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4664-4670
    • /
    • 2010
  • Comparison of the classical mobile-immobile zone (MIM) model to the derived model led to several conclusions. If the MIM model is to be applied, the initial concentration in the immobile zone has to be down-scaled by a correction factor that is a function of pore geometry. The MIM model was valid only after sufficiently long time has passed, i.e., only after the diffusion front reaches the deepest pore wall in the immobile zone. The MIM mass-transfer coefficient $\alpha$, was inversely proportional to the square of the pore depth. Also it did not depend on the mobile-zone flow velocity, contrary to the number of laboratory and field observations. The classical MIM model displayed a rapid exponential decay of immobile-zone concentration. Meanwhile at large times, the newly derived model displayed similar exponential decay. This was contrary to the mounting evidence of power-law BTC tails observed in laboratory and field settings.