• Title/Summary/Keyword: Diffuser vane

Search Result 51, Processing Time 0.021 seconds

Performance Evaluation and Numerical Calculation of Flows through a Vaned Diffuser for Centrifugal Compressor (원심압축기용 베인 디퓨저 내부유동의 수치해석 및 성능평가)

  • Choi, Yun-Ho;Kang, Shin-Hyoung;Lee, Jang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1296-1309
    • /
    • 1999
  • A three dimensional compressible Navier-Stokes code is developed to analyze flowfields and performance of a vaned diffuser in a centrifugal compressor. It employs scalar implicit approximate factorization, finite volume formulation, second order upwind differencing and a two-equation $q-{\omega}$ turbulence model based on the integration to the wall. Pressure recovery and loss coefficients of a vaned diffuser are evaluated using a developed computer code. The simulated three dimensional flows show how through flow structure affects pressure recovery performance and loss coefficients of a vane for design and off-design inlet flow angles. Development of complex three dimensional flow over the inlet region and leading edge are very influential to the overall flow and performance.

An Experimental Study on the Flow Characteristics of a Swirl-Jet Diffuser (공장환기용 선회 제트 디퓨저의 유동 특성에 관한 실험 연구)

  • Lee, C.S.;Jurng, J.;Jeong, S.Y.;Hong, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1994
  • An experimental study is performed on the flow characteristics of a swirl-jet diffuser for factory ventilation. Swirl number ranges from 0(nonswirl jet) to 0.6 when the angle of swirl vane is 60 degree. As swirl becomes strong, the maximum velocity in the plane perpendicular to jet axis decreases fast and the uniformity of velocity becomes good, particularly in the ventilated area. The similarity in velocity profiles has been found for axial velocity from even when swirl number equals 0.6. The flow characteristics of the swirl-jet which has the swirl number of 0.6 is thought to be the best among these three swirl numbers for factory ventilation. However, the pressure drop in the diffuser increases as the swirl becomes strong. This should be considered in the design of the total ventilation system including a duct system.

  • PDF

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

An Experimental Study on Heat Flow Characteristics of Inflowing Cool Air in the Room (실내(室內) 유입(流入) 냉기(冷氣)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Pak, J.W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A study on a buoyancy effect by the temperature difference between a inner room air and a inflowing cool air and also by Inlet velocity can contribute greatly to enhance performance of air conditioning system, so the study on the distribution characteristics of inflowed cool air is important to analyze the cool air storage in a room. For this study, in the real-sized model room, the temperature differences between inflowing cool air and inner room air are 10, 20, $30^{\circ}C$, and the inlet velocities of inflowing cool air are 1, 2, 3m/s respectively as dynamic parameters. Also, a anemos and a vane type diffuser are used as inlet geometric conditions. Following conclusions have been obtained through this study. 1) In case of the anemos type diffuser, it is found that a dimensionless temperature profile is low and the distribution of the inflowed cool air is uniform. and also, all diffuusers have a low temperature of the inner room as increasing the inlet velocity. 2) A mixing takes place rapidly in case of the anemos type diffuser when the temperature difference is low ${\Delta}T=10^{\circ}C$ and the inletvelocity is high V=3m/s. and the mixing degree is higher with the anemos type diffuser than the vane.

  • PDF

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.274-282
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

Experimental Study on the Effect of Inlet Guide Vane of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 성능특성 시험연구)

  • Cha, Bong-Jun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.46-53
    • /
    • 2002
  • This paper reports an experimental investigation on a centrifugal compressor with the adjustable inlet guide vane. The compression system is composed of a radial impeller, a vaneless diffuser, and an IGV. The results have shown that surge line on the performance map is affected by the amount of prewhirl and the prewhirl has an effect on transient region between rotating stall and surge. The surge lines have been shifted toward the lower flow region with the increased positive prewhirl and the higher flow region with the increased negative prewhirl. During the unsteady performance test, it was also found that the transient region was reduced with the increased negative prewhirl, and weak signals of rotating stall were detected just before surge as the positive prewhirl was increased.

The Design and Performance Test of a Centrifugal Compressor for HFC-134a (대체냉매용 원심압축기의 설계 및 성능시험)

  • Sin, Jung-Kwan;Kim, Kyung-Hun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.250-257
    • /
    • 2002
  • A centrifugal compressor for HFC-l34a has been newly designed and developed. Flow analysis using commertial programs was used to evaluate performance and internal flow of the impeller, inlet guide vane and diffuser etc. and design software was developed. The compressor for HFC-l34a was also investigated experimentally to check compression performance. The calculated data coincide the test results of compressor. The data obtained in the present study are useful for design of HFC-l34a centrifugal compressors.

  • PDF

Effects of Casing Shape on the Performance of a Small-sized Centrifugal Compressor

  • Kim, D.W.;Kim, H.S.;Kim, Youn-J.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.132-139
    • /
    • 2003
  • The effects of casing shapes on the performance and the interaction between an impeller and a casing in a small-sized centrifugal compressor are investigated. Especially, numerical analyses are conducted for the centrifugal compressor with both a circular casing and a volute one. The optimum design for each element (i.e., impeller, diffuser and casing) is important to develop an efficient and compact compressor using alternative refrigerant as working fluids. Typical rotating speed of the compressor is in the range of 40,000∼45,000 rpm. The impeller has backswept blades due to tip clearance and a vane diffuser has wedge type. In order to predict the flow pattern inside an entire impeller, vaneless diffuser and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For computations of compressible turbulent flow fields, the continuity and time-averaged Navier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure recovery and loss coefficients are obtained for various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. The static pressure around the casing and pressure difference between the inlet and outlet of the compressor are measured for the circular casing.