• Title/Summary/Keyword: Diffuser flow

Search Result 425, Processing Time 0.029 seconds

A Numerical Study on Aerodynamic Performance by the Blade Mach Number of the Centrifugal Compressor (원심 압축기의 임펠러 마하수에 따른 공력성능 특성에 관한 수치해석적 연구)

  • Heo, Won-Seok;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.56-61
    • /
    • 2015
  • It is important requirement to properly evaluate the aerodynamic performance and characteristics during preliminary design of a centrifugal compressor. In this study the centrifugal compressor was calculated for variations of mass flow and blade Mach number by means of single passage steady state. A lot of quantitative performance values were obtained and through the obtained values the aerodynamic performance characteristics of designed impeller and vaned diffuser were investigated. The results were classified by blade Mach number to analyze characteristics and the aerodynamic performance was examined at choke of impeller, diffuser and separation of diffuser.

Indoor Ventilation Efficiency Depending on Diffuser Inlet Angle (급기구 유입각도에 따른 실내 환기효율)

  • Jeon, Hyun-Jun;Jang, Yong-Jun;Yang, Kyung-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.349-355
    • /
    • 2011
  • In this study, numerical simulation has been conducted to investigate dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome (SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and concentration fields. It is shown that the ventilation efficiency in this room can be improved by changing inlet angle of diffuser, even though other conditions still remain unchanged. Both active diffusion near a sofa and air flow pattern are important parameters to enhance the ventilation efficiency.

A Study on the Diffuser Location for the Reduction of Airborne Infection in Operation Room (수술실내 공기감염억제를 위한 공조용 급배기구 위치 선정에 관한 연구)

  • Kwon, Soonjung;Joo, Youngcheol;Kim, Chun-Sook
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • The air ventilation system of operation rooms has been studied to prevent the cross infection during the operation. Operation rooms and air ventilation systems of three University hospitals were investigated. The distribution of microbe was measured by cultivating air samples in the operation room. A two-dimensional model for the cross-section of an operation room was developed for the CFD(Computational Fluid Dynamics) analysis. The characteristics of air flow in the empty operation room and in occupied operation room were calculated by using a CFD program. The current diffuser location of an old hospital did not deliver the clean air to the operation part efficiently. A new method to locate diffusers that improve air venting with little increase of the cost of equipment was suggested.

  • PDF

UNSTEADY SUPERSONIC INLET DIFFUSER FLOWS WITH SINUSOIDAL PRESSURE OSCILLATIONS

  • Jong Yun Oh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.107-116
    • /
    • 1996
  • Numerical simulations have been conducted to characterize unsteady flow structures in an axisymmetric supersonic inlet diffuser with sinusoidal pressure oscillations at the diffuser exit. The formulation is based on the unsteady Navier-Stokes equations and turbulence closure is achieved using a two-layer model with a too-Reynolds-number scheme for the near-wall treatment. The governing equations are formulated in an integral form, and are discretized by the four-stage Runge-Kutta scheme for temporal terms and the Harten-Yee upwind TVD scheme for convective terms. Results indicated that the inlet shock characteristics are significantly modified by acoustic oscillations originating from the combustor. The characteristics of shock/boundarv-layer interactions (such as the size of separation bubble, terminal shock shape, and vorticity intensity) are also greatly iufluenced by the shock oscillation due to acoustic waves.

  • PDF

Development of an Air Supply System in 250 kW MCFC Fuel Cell System (250kW급 MCFC 연료전지 시스템용 공기공급장치 개발)

  • Park, Jung-Young;Hwang, Soon-Chan;Park, Moo-Ryong;Kim, Young-Chul;Ahn, Kook-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

A Parametric Study of Aerodynamic Noise in Centrifugal Compresso (원심압축기의 공력소음에 관한 파라미터 연구)

  • Sun, Hyosung;Lee, Soogab;Lee, Jungeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.129-134
    • /
    • 2005
  • This paper describes the influence of geometric parameters on the noise generation from a centrifugal compressor. From the analysis of noise measurements, it is observed that Blade Passing Frequency noise related to the rotating impeller is more important, and it is focused on the comparison of this discrete frequency noise according to the shape change. Navier-Stokes solver is used to simulate the flow-field of the impeller and the vaned diffuser, and time-dependent pressure data are calculated and Fourier-transformed to perform the near-field noise prediction. The effects of various geometry design variables such as the gap between the impeller and the diffuser, impeller shape variations on the near-field noise distribution are investigated.

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

Air Distribution Performance According to the Gap Opening of a Temperature Controlled Diffuser (냉난방 온도감지 디퓨져의 간극변화에 따른 기류분포 특성)

  • Han Hwataik;Shin Min-Woo;Yom Chol-Min;Choi Sun-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.180-185
    • /
    • 2006
  • This study has been conducted in order to develop a temperature-controlled round pan diffuser with variable-openings. Flow visualization was performed to investigate the airflow patterns according to gap openings. The velocity profiles were measured using an omni-directional anemometer for two cases, i.e. a horizontal and a vertical discharge conditions. Numerical simulation also confirms there is a narrow range of gap openings where a horizontal discharge shifts to a vertical discharge. The air distribution performance index increases abruptly when the air discharge shifts from vertical to horizontal direction.

A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure (고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성)

  • Kim, Wan Chan;Yu, I Sang;Kim, Tae Woan;Park, Jin Soo;Ko, Young Sung;Kim, Min Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.563-570
    • /
    • 2017
  • Experimental and numerical studies were performed to investigate the performance and internal flow characteristics of a supersonic second throat exhaust diffuser (STED) with back pressure ($P_a$). An ejector system was used to vary the back pressure ($P_a$) conditions. The operating gas for the STED and the ejector was high pressure nitrogen at room temperature. When the back pressure ($P_a$) at a constant nozzle inlet pressure $P_0$) decreases, the pressure recovery location moves downstream. If the pressure ratio $P_0/P_a$) is the same, even if the nozzle inlet pressures $P_0$) are different, the diffuser's internal flow pattern and starting pressure ratio ($(P_0/P_a)_{st}$) are almost the same.

Computational Study of Supersonic Chevron Ejector Flows (초음속 Chevron 이젝터 유동에 대한 수치해석적 연구)

  • Kong, Fanshi;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.89-96
    • /
    • 2013
  • Considering the complexity and difficulty on the researching, how to enhance the performance of ejector-diffuser system effectively became a significant task. In the present study, the supersonic nozzle was redesigned using Chevrons installed at the inlet of the secondary stream of the ejector-diffuser system for the purpose of the performance improvement. A CFD method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. Primary numerical analysis results show that the Chevrons get a positive effect on the ejector flows. The comparison of ejector performance with and without the Chevron was obtained and optimal number of chevron lobe is discussed to increase the performance. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.