• 제목/요약/키워드: Diffuser flow

검색결과 425건 처리시간 0.027초

확대관의 난류구조 변동에 관한 연구 (A study on the change of turbulence structure in a diffuser)

  • 이장환;한용운
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.

다양한 디퓨저 형상의 유량 분배 특성에 관한 수치해석 연구 (Numerical Analysis of Flow Rate Distribution of Diffusers with Various Shapes)

  • 김명수;김후배;최형권
    • 대한기계학회논문집B
    • /
    • 제38권9호
    • /
    • pp.789-795
    • /
    • 2014
  • 본 연구에서는 개방형 축열시스템에 설치되는 다양한 형상을 가진 디퓨저의 유량 분배 특성을 수치해석 하였다. 작동유체가 분기배관의 양 방향으로 나뉘어져 있는 구멍들을 통하여 균등하게 분배되도록 4가지 형상의 디퓨저를 설계하였다. 상용 해석 프로그램인 ANSYS-FLUENT을 사용하여 비압축성 유체의 3차원 정상 층류 유동으로 시뮬레이션을 수행하였다. 한 방향 또는 양 방향으로 분배되는 디퓨저는 유량이 일정하게 분배되지 않는 반면에 양 방향 헤더 형식과 H형 대칭구조의 디퓨저는 균등한 분배 특성을 보였다. 한편, H형 대칭구조의 디퓨저는 양 방향 헤더 형식 디퓨저보다 높은 펌프 양정을 필요로 하므로 유량분배도 일정하고 펌프 양정도 낮은 양 방향 헤더 형식 디퓨저가 최적임을 확인하였다.

초음속 디퓨져 시동 과정에 관한 수치 모사; 초기 진공도에 따른 디퓨져 내부 충격파 구조의 발달 과정 (Numerical simulation on starting transients in supersonic exhaust diffuser; evolution of internal shock structures with different initial cell pressures)

  • 박병훈;임지환;윤응섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.46-55
    • /
    • 2005
  • For the sea-level performance test of rocket motor designed to operate in the upper atmosphere, ejectors with no induced secondary flow are generally used, which serves dual purposes of evacuating the test cell and performing as a supersonic exhaust diffuser (SED). The main concern of this research is to simulate starting transients in order to visualize evolution of internal shock structures in SED with different initial cell (vacuum chamber) pressures. RANS code with low Reynolds $k-\varepsilon$ turbulence model was employed for these computations. Numerical results were compared with the pressure measurements previously performed [Proceedings of 2004 Annual Conference, KIMST], and showed good agreements with pressure-time history of measured data. In the case of low vacuum chamber pressure, abrupt impingement of the under-expanded supersonic jet from the nozzle onto the diffuser wall was observed, whereas initial impingement point was located downstream and moved slowly upstream in the case of non-vacuum chamber pressure. In spite of initially dissimilar evolution of shock structures, iso-mach contour revealed that the steady shock structures had little difference except the location of flow separation and normal shock.

  • PDF

라인-디퓨저의 ADPI특성에 관한 연구 (ADPI Characteristics of a Line-Diffuser)

  • 이재헌;조영진;강석윤;오명도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.958-964
    • /
    • 2001
  • It is difficult to apply a conventional selection guide for diffusers when the diffuser is installed in a perimeter zone, because the ADPI(Air Diffusion Performance Index) vs. T/L(Throw/Length) curve listed in conventional guide does not consider the perimetric heating load. The objective of this study is to evaluate the effect of the perimetric heating load on the ADPI and to propose a selection guide for proper diffuser when perimetric heating load exists. The velocity and temperature distributions and the ADPI value are obtained numerically with various heat load ratios and air flow rates. The ADPI values by numerical result were compared with existing experimental data to verify the method for evaluation of ADPI proposed in present study. In case of a high side wall diffuser, the ADPI decreased with increases of the flow rate on every heat load ratio of present study except 0.75. Also, the ADPI vs. T/L curves have been proposed for the heat load ratios of 0.25, 0.5, 0.75 to guarantee comport thermal environment when diffusers are installed in perimeter zone.

  • PDF

터보 압축기 임펠러-디퓨저 운동장에 대한 정상상태 해석 (Steady Simulations of Impeller-Diffuser Flow Fields in Turbocompressor Applications)

  • 남삼식;박일영;이성룡;주병수;황영수;인배석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.405-412
    • /
    • 2005
  • Numerical and experimental investigations were conducted to assess the aerodynamic performance of several centrifugal compressors. In order to impose an appropriate physics at the interface between impeller and vaned diffuser numerically, two different techniques, frozen rotor and stage models, were applied and the simulation results were compared with the corresponding prototype test data. An equivalent sand-grain roughness height was utilized in the present computational study to consider a relative surface roughness effect on the stage performance simulated. From a series of investigations, it was found that the stage model is more suitable than the frozen rotor scheme for the steady interactions between impeller and diffuser in turbocompressor applications. It is supposed that the solution by frozen rotor scheme is inclined to overrate the non-uniformity of the flow fields. The predicted aerodynamic performance accounting for surface roughness effect shows favorable agreement with experimental data. Simulations based on the aerodynamically smooth surface assumption tend to overestimate the stage performance.

  • PDF

함정 적외선 신호 감소를 위한 폐기관의 디퓨져 설계에 관한 연구 (A Study on the Diffuser Design of Exhaust Pipes for the Infra-Red Signature Reduction of Naval Ship)

  • 윤석태;조용진;고대은
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.793-798
    • /
    • 2017
  • 현대의 함정에서는 추진 기관에서 생성된 고온의 폐기가스와 가열된 폐기관의 금속표면온도를 저감하기 위해 적외선 신호저감 장치(Infra-red Signature Suppression system, IRSS)를 설치하고 있다. 국내 함정에 탑재된 일반적인 IRSS는 이덕터, 믹싱튜브 그리고 디퓨져로 구성되며, 이 중 디퓨져는 금속표면에 내기 외기의 압력차에 의한 공기 막을 생성시켜 온도를 저감시키는 역할을 한다. 본 연구에서는 국외 선진 기술사에서 설계한 IRSS의 디퓨져 형상을 분석하여 설계 변수를 선정하였으며, 분석 조건을 줄이면서 설계 변수의 특성을 효과적으로 파악 할 수 있는 다구치 실험계획법을 통해 IRSS 디퓨져의 성능에 영향을 미치는 설계 변수의 특성을 검토하였다. 디퓨져의 성능분석에는 선행 연구에서 정립한 열 유동해석 기술을 활용하였다. IRSS의 성능평가에는 함정 적외선 신호의 세기와 직접적으로 관련되는 디퓨져 출구에서의 폐기가스 온도와 금속표면온도의 면적평균 값을 기준으로 하였으며, 폐기가스의 온도는 디퓨져 출구의 직경 변화에 크게 영향을 받고, 디퓨져 금속표면의 온도는 디퓨져 링의 개수 변화에 크게 영향 받음을 확인하였다.

취출구를 가진 덕트의 공기분배장치 설계 (Design Of Air-Distribution System in a Duct)

  • 강형선;조병기;고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

고공환경 모사용 Center Body Diffuser의 시동 특성에 관한 실험적 연구 (An Experimental Study on Startup Characteristics of a Center Body Diffuser for High Altitude Simulation)

  • 연해인;유이상;김완찬;임지녕;고영성
    • 대한기계학회논문집B
    • /
    • 제40권2호
    • /
    • pp.93-102
    • /
    • 2016
  • 본 연구에서는 고고도의 저압 환경을 모사하기 위한 CBD(Center Body Diffuser)의 시동특성에 대한 실험적 연구를 수행하였다. Center Body Diffuser의 형상을 다양하게 구성할 수 있도록 실험 장치를 설계/제작하여, 상온 유동 실험을 통해 CBD 형상에 따른 저압환경 구현 성능과 시동 특성을 관찰하였다. 실험 결과 센터바디의 수축각이 약 15도 일 때 시동압력이 가장 낮은 것을 확인하였다. 또한 디퓨저 입구부 길이($L_d/D_d$)가 감소할수록, 확산부 길이($L_s$)가 증가할수록 시동특성이 크게 향상되었다. 또한 디퓨저 입구부 길이($L_d/D_d$) 변화만을 통해 진공 챔버 압력을 조절할 수 있는 CBD만의 설비적 장점을 확인하였다.

디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향 (Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header)

  • 정영준;김서영;김광호;곽재수;강병하
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.