• Title/Summary/Keyword: Diffuser Pump

Search Result 73, Processing Time 0.024 seconds

A Study of Performance Improvement of a Vaporizer Sea-Water Pump (기화해수펌프 성능 개선에 대한 연구)

  • Kim, Yang-Ik;Chung, Kyung-Nam
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.645-649
    • /
    • 2005
  • In this study, redesign of a vaporizer sea-water pump has been carried out using computational fluid dynamics. The flow field of the specified pump model is simulated and analyzed. In the flow analysis full pump model has been used, and multi-block grids are employed to solve the governing equations. In order to improve pump efficiency, systematic redesign has been performed to remove the flow recirculation near the hub of the diffuser vanes. The modified model shows about 4 % improvement in pump efficiency compared to the given model.

  • PDF

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.

The Flow Analysis and Evaluation of the Peristaltic Micropump (마이크로 정량펌프의 유동해석과 작동성능 평가)

  • 박대섭;최종필;김병희;장인배;김헌영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents the fabrication and evaluation of mechanical behavior for a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, the middle plate, the upper plate and the tube that connects inlet and outlet of the pump. The lower plate includes the channel and the chamber, and the plain middle plate are made of glass and actuated by the piezoelectric translator. Channels and a chamber on the lower plate are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The upper plate does the roll of a pump cover and has inlet/outlet/electric holes. Three plates are laminated by the aligner and bonded by the anodic bonding process. Flow simulation is performed using error-reduced finite volume method (FVM). As results of the flow simulation and experiments, the single chamber pump has severe flow problems, such as a backflow and large fluctuation of a flow rate. It is proved that the double-chamber micropump proposed in this paper can reduce the drawback of the single-chamber one.

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape - (볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 -)

  • Jin, Hyun Bae;Kim, Myung Jin;Son, Chang Ho;Chung, Wui Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

A Study on the Diffuser Inlet Shape of Thermocompressor for MED Desalination Plant (다중효용 담수설비용 열압축기의 디퓨져 입구부 형상에 관한 연구)

  • Jin, Chang-Fu;Song, Young-Ho;Kim, Kyung-Keun;Park, Gi-Tae;Chung, Han-Shik;Choi, Du-Youl
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.869-876
    • /
    • 2008
  • A thermocompressor is the equipment which compresses a vapor to a desired discharge pressure. Since it was first used as the evacuation pump for a surface condenser, it has been widely adopted for energy saving systems due to its high working confidence. In the present study, the geometrical analysis of the shape between the jet nozzle and the diffuser inlet, the drag force was calculated by means of the integrated equation of motion and the computational fluid dynamic (CFD) package called FLUENT. The computer simulations were performed to investigate the effects by the various suction flow rates, the distance from jet nozzle outlet to the diffuser inlet and the dimensions of the diffuser inlet section through the iterative calculation. In addition, the results from the CFD analysis on the thermocompressor and the experiments were compared for the verification of the CFD results. In the case of a jet nozzle, the results from the CFD analysis showed a good agreement with the experimental results. Furthermore, in this study, a special attention was paid on the performance of the thermocompressor by varying the diffuser convergence angle of $0.0^{\circ}$, $0.5^{\circ}$, $1.0^{\circ}$, $2.0^{\circ}$, $3.5^{\circ}$ and $4.5^{\circ}$. With the increase of the diffuser convergence angle. the suction capacity was improved up to the degree of $1.0^{\circ}$ while it was decreased over the degree of $1.0^{\circ}$.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

A Study on the Performance Characteristics of Air Driven Gas Ejector (공기구동 기체이젝터의 성능특성에 관한 연구)

  • 홍영표;윤두호;김용모;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 1994
  • The gas jet pumps serve to preduce a vacuum or can be used as gas jet compressors. These are operated on the same principle as a steam jet vacuum pump : in the driving nozzle the pressure energy of the motive medium is converted into the kinetic energy. In the diffuser the driving jet mixes with the suction medium and the kinetic energy is reconverted into the pressure enegy. The application fields of gas jet ejectors are the evacuation of siphoning installations, the elevation of liquids, the production of vacuum filters, the vacuum supporting airlift system, the evacuation of the suction line of centrifugal pumps and the ventilation of the dangerous gases to the atmosphere. The performance of gas jet ejector is influenced strongly to velocity coefficient of motive nozzle, the distance between the motive outlet to the diffuser inlet and the dimensions of diffuser. This study is performed for the computer aided design of gas jet ejectors in future. Through the present experiments, it is known that the velocity coefficient of the motive air nozzle ranges from 0.91 to 0.95 and the maximum efficiency of gas jet ejector is 24.6%.

  • PDF

Prediction of Axial Pump Performance Using CFD Analysis (전산유체해석을 이용한 축류펌프의 성능예측)

  • Kim M. H.;Kim J. I.;Park J. S.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.14-20
    • /
    • 2001
  • The CFD analysis of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump was performed. Not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicted the experimental head value. In the range of the higher flow rates, the results were also in very good agreement with the experimental data, not only in absolute value but also in term of slope. Although experimental data to be compared were not available in the range of the lower flow rates, the results well described the S-shape performance curve of the axial pump characteristic.

  • PDF