• Title/Summary/Keyword: Diffuser/nozzle

Search Result 124, Processing Time 0.023 seconds

CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G (수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구)

  • Joo, Hong-Jin;Jung, Il-Young;Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Concept Design on Heating System for Supersonic Air-Breathing Engine Test Facility (초음속 유도무기 지상 시험용 가열기 개념 설계)

  • Han Poong-Gyoo;NamKoung Hyuck-Joon;Lee Kyoung-Hoon;Kim Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • Vitiated air heater which could supply air of 700K and 6 bar was designed conceptually for the firing test on the ground of the air breathing propulsion engines. This vitiated air heater consists of premixer with air and excessive gas oxygen, mixing head, combustor with gas passage, convergent-divergent nozzle and diffuser. the fuel was natural gas and/or liquefied natural gas. Through computational fluid dynamics, each component of the air heater was analyzed and flame-holding after ignition was investigated.

  • PDF

A Study on Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter with L-Shape Inlet Connector Using Automatic Measurement (측정자동화에 의한 입구연결부 형상이 L-형인 디젤매연필터 입.출구에서의 유속 분포에 관한 연구)

  • Lee, Choong-Hoon;Bae, Sang-Hong;Choi, Ung;Lee, Su-Ryong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of Diesel Particulate Filter(DPF) by fabricating L-shape connector with the DPF was measured using a Pitot-tube and 2-D transverse machine. An adaptor designed for making the Pitot tube probe access to the inlet and exit of the DPF was connected with the inlet and exit flange of the DPF, respectively. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet and exit of the DPF through the rectangular window of the adaptor. The L-shape connector in the DPF inlet has a flow guide which is a perforated steel pipe. The flow velocity distribution at the inlet of the DPF showed a chaotic velocity distribution which is different from that with a diffuser type connector. The velocity distribution at the exit of the DPF showed a crown shape which is similar to that of the diffuser type connector. The velocity distribution at the exit of DPF showed different patterns according to the air flow rate.

Computations of the Supersonic Ejector Flows with the Second Throat (2차목을 가지는 초음속 이젝터 유동에 관한 수치계산)

  • Choi, Bo-Gyu;Lee, Young-Ki;Kim, Heuy-Dong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

Development of Calibration Jet System for Calibrating a Flow Sensor (유동센서 보정용 캘리브레이션 제트 시스템 개발)

  • Chang, J.W.;Byun, Y.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.11 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A calibration jet system using separate blower is developed to calibrate a flow sensor effectively. Designed open circuit type mini calibration jet system, which has the dimension of $0.5m(W){\times}1.17m(H)$ is small compared with conventional calibration jet systems. The exit of nozzle has exchangeable contractions with a cross section area of $38.5cm^2$ , and a cross section area of $113.1cm^2$, respectively. The ranges of wind speed at exit of exchangeable nozzles are $7.5{\sim}42\;m/s$ and $1.8{\sim}16.5\;m/s$, respectively. The input power for the high pressure blower is 1.18kW. The turning vanes for corner was rolled flat plate parallel to the flow direction. The flow conditioning screen was located immediately downstream of the wide-angle diffuser. The honeycomb and two flow conditioning screens were located in the stagnation chamber. From the economical point of view and the simplicity of the calibration jet system set up and handling, it can be said that the developed calibration jet system is an effective calibration jet system. This system can also be used to calibrate the flow sensor with high resolution.

  • PDF

Periscope Imaging System Design and Analysis for Flame Front Visualization (화염 정면 가시화를 위한 페리스코프 영상 시스템 설계 및 해석)

  • Shin, Jaeik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.16-23
    • /
    • 2019
  • This paper describes the design and analysis of a periscope imaging system installed at the engine test facility in the Agency for Defense Development. The periscope system is a cylinder-shaped image observation system installed at the rear of the engine and at the top of the diffuser. The periscope system has high risk of breaking because it is directly affected by high temperature (2300 K) and products of combustion. Thus, we used 1D heat transfer calculation, and 2D and 3D CFD analysis to confirm the heat flux and temperature distribution. Also, the cooling performance was verified. In the current design, using the periscope system, we can see flame shapes, control of the nozzle, and stability of the exhaust flow visually.

The evaluation of performance and flow characteristics due to the length of throat and diffuser for ship's ejector (선박용 Ejector의 직관부와 디퓨저 길이 변화에 따른 성능비교 및 유동특성에 관한 연구)

  • Lee, Young-Ho;Kim, Mun-Oh;Kim, Chang-Goo;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. The efficiency of the ejector system is relatively very low, compared to other fluid transport devices driven mainly by the forces acting on the normal direction. However, its major advantage is a simple structure with no moving parts, and it transports a large amount of fluid with a small driving energy. In this study, the performance of side-type liquid ejector commonly used in ships; is analyzed by using experimental and CFD methods under steady and incompressible flow condition by varying the length of the throat and diffuser, the flow pattern and suction phenomenon were studied in detail.

STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER (기체-액체 이젝터의 디퓨저 형상에 대한 연구)

  • Jang, Jin-Woo;Sin, Won-Hyeop;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6412-6418
    • /
    • 2014
  • This paper performed a numerical study of an air-liquid ejector. An ejector is a fluid-transportation device that spouts high-pressure fluid from driving pipes using the kinetic energy of the spouted fluid and increases the pressure through the exchange of momentum with the surrounding gases of the lower pressure. The air-liquid ejector was investigated through steady three-dimensional multiphase CFD analysis using commercial software ANSYS-CFX 14.0. Water as the primary fluid is driven through the driving nozzle and air is ejected as the second gas instead of ozone in real applications. The difference in performance according to the shape of the diffuser of the ejector was examined. The results provide deep insight into the influence of various factors on the performance of the air-liquid ejector. The proposed numerical model will be very helpful for further design optimization of the air-liquid ejectors.

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • Kim, H.D.;Lee, J.H.;Woo, S.H.;Choi, B.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF