• 제목/요약/키워드: Diffraction of waves

Search Result 241, Processing Time 0.02 seconds

Wave Deformation Model in Orthogonal Curvilinear Coordinate System around the Coastal Structure (파향선 좌표계에 의한 해암구조물 주변에서의 파랑변형 모형)

  • 이동수;이종섭;장선덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1989
  • Wave propagation is changed by the effect of shoaling, current-depth refraction and shelter-ing etc. To solve these problems. numerous models have been developed. In the present study, a coordinate system is proposed based on the wave ray equation with the wave number equation including diffraction effects . The governing equation for the study was derived from the mild slope wave equation in non-steady state, including current effects (Kirby, 1986a) and trans-formed into an orthogonal curvilinear coordinate system on the basis of the wave ray equation. To obtain a numerical solution, an explicit finite difference scheme was used, and solved by the relaxation method. This model was tested for various cases: Firstly a submersed circular shoal and a constant unit depth. Secondly a submerged elliptic shoal on a slope, and finally a breakwater harbour with obliquely incident waves on a slope. The model was found to simulate the experimental results and other theoretical results in wave height and wave angle fairy well, and the applicability of the model around an arbitrary shaped coastal structure was also verified. To demonstrate the general usefullness of the present approach , the model is to be applied to a field situation with a complex bed topography.

  • PDF

An improvement algorithm for localization using adjacent node and distance variation analysis techniques in a ship (근접노드와 거리변화량분석기법을 이용한 선내 위치인식 개선 알고리즘)

  • Seong, Ju-Hyeon;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Gug;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.213-219
    • /
    • 2013
  • Recently, with the rapid advancement in information and communication technology, indoor location-based services(LBSs) that require precise position tracking have been actively studied with outdoor-LBS using GPS. However, in case of a ship which consists of steel structure, it is difficult to measure a precise localization due to significant ranging error by the diffraction and refraction of radio waves. In order to reduce location measurement errors that occur in these indoor environments, this paper presents distance compensation algorithms that are suitable for a narrow passage such as ship corridors without any additional sensors by using UWB(Ultra-wide-band), which is robust to multi-path and has an error in the range of a few centimeters in free space. These improvement methods are that Pythagorean theory and adjacent node technique are used to solve the distance error due to the node deployment and distance variation analysis technique is applied to reduce the ranging errors which are significantly fluctuated in the corner section. The experimental results show that the number of nodes and the distance error are reduced to 66% and 57.41%, respectively, compared with conventional CSS(Chirp spread spectrum) method.

Motion Analysis of Two Floating Platforms with Mooring and Hawser Lines in Tandem Moored Operation by Combined Matrix Method and Separated Matrix Method

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.1-15
    • /
    • 2005
  • The motion behaviors including hydrodynamic interaction and mechanical coupling effects on multiple-body floating platforms are simulated by using a time domain hull/mooring/riser coupled dynamics analysis program. The objective of this study is to evaluate off-diagonal hydrodynamic interaction effects and mechanical coupling effects on tandem moored FPSO and shuttle taker motions. In the multiple-body floating platforms interaction, hydrodynamic coupling effects with waves and mechanical coupling effects through the connectors should be considered. Thus, in this study, the multiple-body platform motions are calculated by Combined Matrix Method (CMM) as well as Separated Matrix Method (SMM). The advantage of the combined matrix method is that it can include all the 6Nx6N full hydrodynamic and mechanical interaction effects among N bodies. Whereas, due to the larger matrix size, the calculation time of Combined Matrix Method (CMM) is longer than the Separated Matrix Method (SMM). On the other hand, Separated Matrix Method (SMM) cannot include the off-diagonal 6x6 hydrodynamic interaction coefficients although it can fully include mechanical interactions among N bodies. To evaluate hydrodynamic interaction and mechanical coupling effects, tandem moored FPSO and shuttle tanker is simulated by Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The calculation results give a good agreement between Combined Matrix Method (CMM) and Separated Matrix Method (SMM). The results show that the Separated Matrix Method (SMM) is more efficient for tandem moored FPSO and shuttle tanker. In the numerical calculation, the hydrodynamic coefficients are calculated from a 3D diffraction/radiation panel program WAMIT, and wind and current forces are generated by using the respective coefficients given in the OCIMF data sheet.

A Robust Digital Watermarking based on Virtual Optics (가상 광학에 기반한 강인한 디지털 워터마킹)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1073-1080
    • /
    • 2011
  • In this paper, we propose a novel digital watermarking method by virtual optics which secures multimedia information such as images, videos and sounds. To secure the multimedia data, we use Fresnel transform which describes the diffraction phenomena of the waves. Also, this method attaches the random phase function to Fresnel transform so that original image and watermark image would be gaussian random vectors. The complex numbers of watermark by Fresnel transform are separated the real part and the imaginary part. The former is embedded in original image as a encoding key imperceptibly and the latter is used for detecting the watermark as a decoding key. This method for digital watermarking ensures that watermark can be successfully registered and extracted from the watermarked image. Further, it provides the robustness to signal processing operation and geometric distortion and proves the strong resilience against cropping attack. The performance evaluation of the experiment is carried out with PSNR, and the numerical simulation results show the efficiency of the proposed method.

Shallow Water Wave Hindcasting by the Combination of MASCON and SWAN Models (지형을 고려한 해상풍 모델(MASCON)과 SWAN 모델의 결합에 의한 천해파랑 산정)

  • Kim, Ji-Min;Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Shallow water waves are hindcasted from sea wind fields, which include wave transformations such as shoaling, refraction, diffraction, reflection and wave breaking. In case of estimating sea wind field in shallow water, the sea wind revised from free wind obtained by the typhoon model is widely used. However, this method is not able to consider the effect of land topography on the wind field, which will be important factor for shallow water wave forecasting and hindcasting. In this study, therefore, the effect of land topography on sea wind field in shallow water is investigated for shallow water wave forecasting and hindcasting with high accuracy. The 3-D MASCON model is introduced to consider the influence of land topography on the wind field. And, for two areas divided by the topographical characteristics, i.e. shielded and opened coastal areas, sea wind field is examined by comparison between initial wind field by typhoon model and modified wind field by 3-D MASCON model. Finally, applying these sea wind fields to SWAN model, the results of shallow water wave calculated in shielded and opened coastal areas are compared, and, also, the effect of MASCON model on shallow water wave forecasting and hindcasting is discussed.

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

Distribution Patterns and Provenance of Surficial Sediments from Ieodo and Adjacent Sea (이어도와 주변 해역의 표층퇴적물 분포와 퇴적물 기원지)

  • Chang, Tae Soo;Jeong, Jong Ok;Lee, Eunil;Byun, Do-Seong;Lee, HwaYoung;Son, Chang Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.588-598
    • /
    • 2020
  • The seafloor geology of Ieodo, a submerged volcanic island, has been poorly understood, although this place has gained considerable attention for ocean and climate studies. The main purpose of the study is to understand and elucidate types, distribution patterns and provenance of the surficial sediments in and around the Ieodo area. For this purpose, 25 seafloor sediments were collected using a box-corer, these having been analyzed for grain sizes. XRD (X-ray Diffraction) analysis of fine-grained sediments was conducted for characterizing clay minerals. The peak of Ieodo exists in the northern region, while in the southern area, shore platforms occur. The extensive platform in the south results from severe erosion by strong waves. However, the northern peak still survived from differential weathering. Grain size analyses indicated that gravels and gravelly sands with skeletons and shells were distributed predominantly on the volcanic apron and shore platform. Muddy sediments were found along the Ieodo and the adjacent deeper seafloor. Based on the analysis of clay mineral composition, illites were the most abundant in fine muds, followed by chlorites and kaolinites. The ratio plots of clay minerals for the provenance discrimination suggested that the Ieodo muds were likely to be derived from the Yangtze River (Changjiang River). As a consequence, gravels and gravelly sands with bioclastics may be supplied from the Ieodo volcanic apron by erosion processes. Wave activities might play a major role in transportation and sedimentation. In contrast, fine muds were assumed to be derived from the inflow of the Yangtze River, particularly in summer. Deposition in the Ieodo area is, therefore, probably controlled by the inflow from the Changjiang Dilute Water and summer typhoons from the south.