• Title/Summary/Keyword: Diffraction Effects

Search Result 903, Processing Time 0.028 seconds

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Effects of $Dy_2$$O_3$ composition for the photoluminescence and long-phosphorescent characteristics of stuffed tridymite $SrAl_2$$O_4$ : $Eu^{2+}$ phosphors (Stuffed tridymite계 $SrAl_2$$O_4$ : $Eu^{2+}$ 형광체의 발광 및 장잔광특성에 미치는 $Dy_2$$O_3$의 영향)

  • 이영기;김병규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • We investigated photoluminescence, long-phosphorescent and crystalline properties with various $Dy_2$$O_3$ compositions (0.0~9.5mol%) in $SrAl_2$$O_4$ : $Eu^{2+}$,$Dy^{3+}$ phosphor powders prepared by the solid state reaction. The highest emission wavelength (520nm) of photoluminescence spectra was not affected by the Dy doping concentrations. The$SrAl_2$$O_4$single phase which was determined by X-ray diffraction and photoluminescence was appeared for the concentrations of $Dy_2$$O_3$$\leq$1.0 mol%. After removal of the pulsed Xe-lamp excitation (360nm), also, excellent long phosphorescent properties of the phosphors were obtained with the concentrations of $Dy_2$$O_3$$\leq$1.0mol%, although the decay time for all phosphors decrease exponentially.

  • PDF

Studies on the Stabilization of Rayon Fabrics: 3. Effects of Long-Term Isothermal Stabilization at Low Temperatures and Chemical Pre-treatment (레이온직물의 안정화에 관한 연구: 3. 저온 장시간 등온 안정화 및 화학전처리 영향)

  • Cho, Chae Wook;Cho, Donghwan;Park, Jong Kyoo;Lee, Jae Yeol
    • Journal of Adhesion and Interface
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • In the present study, isothermal stabilization processes for rayon fabrics were performed at two relatively low temperatures $180^{\circ}C$ and $200^{\circ}C$ for a long period of time. The results of weight loss, dimensional shrinkage, X-ray diffraction and scanning electron microscopic observations studied with the rayon fabrics before and after the isothermal stabilization indicated that the chemical and physical changes of rayon precursor fibers proceeded continuously and slowly at the stabilization temperature below $200^{\circ}C$. And the pre-treatment with four different chemical compounds done prior to stabilization process influenced differently the characteristics of rayon fabrics. As a result, it was noticed that under the given stabilization conditions, $H_3PO_4$ and $Na_3PO_4$ played a role in catalyzing the stabilization reaction of rayon fabric whereas $NH_4Cl$ and $ZnCl_2$ played a role in delaying or retarding the reaction. $H_3PO_4$ showed the lowest percent weight loss of the fabric in the second stabilization conducted at $350^{\circ}C$. It was considered that phosphoric acid, which has a function of flame retardant, contributed to retarding somewhat the subsequent reaction even in the second stabilization step.

Template Synthesis of Ordered-Mesoporous Tin Oxide for Lithium-ion Battery Anode Materials (주형 합성법을 통해 합성된 다공성 주석 산화물을 적용한 리튬이차전지용 음극재 연구)

  • Seo, Gyeongju;Choi, Jaecheol;Lee, Yong Min;Ko, Chang Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2014
  • Mesoporous tin oxide (meso-$SnO_2$) with 5 nm mesopore and well-aligned $SnO_2$ nanowire-bundles with 5~7 nm diameters were prepared by template synthesis method. In addition to meso-$SnO_2$, meso-$SnO_2$/$SiO_2$, which has almost the same structure as meso-$SnO_2$ including $SiO_2$ used as the template were prepared by the modification of template synthesis. X-ray diffraction, N2 adsorption-desorption isotherms, transmission electron microscopy observed structures of meso-$SnO_2$ and meso-$SnO_2$/$SiO_2$. Although the meso-$SnO_2$/$SiO_2$ showed some positive evidences to suppress the volume change of meso-$SnO_2$ through cyclic voltammogram, electrochemical impedance spectroscopy, and voltage profiles during cycling, its cycle life was not improved highly to address modified structural effects. Thus, further study might be done to control the nanostructure of meso-$SnO_2$/$SiO_2$ for enhanced cycle performance.

Effects of Sulfur Substitution on Chemical Bonding Nature and Electrochemical Performance of Layered LiMn0.9Cr0.1O2-xSx

  • Lim, Seung-Tae;Park, Dae-Hoon;Lee, Sun-Hee;Hwang, Seong-Ju;Yoon, Young-Soo;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1310-1314
    • /
    • 2006
  • Sulfur-substituted $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$ $(0\;\leq\;x\;\leq\;0.1)$ layered oxides have been prepared by solid state reaction under inert atmosphere. From powder X-ray diffraction analyses, all the present lithium manganates were found to be crystallized with monoclinic-layered structure. Electrochemical measurements clearly demonstrated that, in comparison with the pristine $LiMn_{0.9}Cr_{0.1}O_2$, the sulfur-substituted derivatives exhibit smaller discharge capacities for the entire cycle range but the recovery of discharge capacity after the initial several cycles becomes faster upon sulfur substitution. The effect of the sulfur substitution on the chemical bonding nature of $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$has been investigated using X-ray absorption spectroscopic (XAS) analyses at Mn and Cr K-edges. According to Mn K-edge XAS results, the trivalent oxidation state of manganese ion remains unchanged before and after the substitution whereas the local structure around manganese ions becomes more distorted with increasing the substitution rate of sulfur. On the other hand, the replacement of oxygen with sulfur has negligible influence on the local atomic arrangement around chromium ions, which is surely due to the high octahedral stabilization energy of $Cr^{+III} $ ions. Based on the present experimental findings, we have suggested that the decrease of discharge capacity upon sulfur substitution is ascribable to the enhanced structural distortion of $MnO_6$ octahedra and/or to the formation of covalent Li-S bonds, and the accompanying improvement of cyclability would be related to the depression of Mn migration and/or to the pillaring effect of larger sulfur anion.

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

Enhanced critical current density of in situ processed MgB2 bulk superconductors with MgB4 additions

  • Kim, S.H.;Kang, W.N.;Jun, B.H.;Lee, Y.J.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2017
  • The effects of $MgB_4$ addition on the superconducting properties and the microstructure of in situ processed $MgB_2$ bulk superconductors were studied. $MgB_4$ powder of 1-20 wt.% was mixed with (Mg + 2B) powder and then pressed into pellets. The pellets of (Mg + 2B + $xMgB_4$) were heat-treated at $650^{\circ}C$ for 1 h in flowing argon. The powder X-ray diffraction (XRD) analysis for the heat-treated samples showed that the major formed phase in all samples was $MgB_2$ and the minor phases were $MgB_4$ and MgO. The full width at half maximum (FWHM) values showed that the grain size of $MgB_2$ decreased as the amount of $MgB_4$ addition increased. $MgB_4$ particles included in a $MgB_2$ matrix is considered to suppress the grain growth of $MgB_2$. The onset temperatures ($T_{c,onset}$) of $MgB_2$ with $MgB_4$ addition (0-10 wt.%) was between 37-38 K. The 20 wt.% $MgB_4$ addition slightly reduced the $T_{c,onset}$ of $MgB_2$ to 36.5 K. This result indicates that $MgB_4$ addition did not influence the superconducting transition temperature ($T_c$) of $MgB_2$ significantly. On the other hand, the small additions of 1-5 wt.% $MgB_4$ increased the critical current density ($J_c$) of $MgB_2$. The $J_c$ enhancement by $MgB_4$ addition is attributed not only to the grain size refinement but also to the possible flux pinning of $MgB_4$ particles dispersed in a $MgB_2$ matrix.

Aerosol Deposition and Its Potential Use for Bioactive Ceramic Coatings

  • Hahn, Byung-Dong;Park, Dong-Soo;Lee, Jeong-Min;Choi, Jong-Jin;Ryu, Jung-Ho;Yoon, Woon-Ha;Lee, Byoung-Kuk;Choi, Joon-Hwan;Kim, Hyoun-Ee
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.41.1-41.1
    • /
    • 2009
  • Aerosol Deposition (AD) is anovel way to fabricate bioactive ceramic coatings in biomedical implants and prostheses applications. In the present work, silicon-substituted hydroxyapatite (HA) coatings on commercially pure titanium were prepared by aerosol deposition using Si-HA powders. The incorporation of silicon in the HA lattice is known to improve the bioactivity of the HA, makingsilicon-substitute HA an attractive alternative to pure HA in biomedical applications. Si-HA powders with the chemical formula $Ca_{10}(PO_4)_6-x(SiO_4)x(OH)_2-x$, having silicon contents up to x=0.5 (1.4 wt%), were synthesized by solid-state reaction of $Ca_2P_2O_7$, $CaCO_3$, and $SiO_2$. The Si-HA powders were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), and Fourier transform infrared spectroscopy(FT-IR). The corresponding coatings were also analyzed by XRD, scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA). The results revealed that a single-phase Si-HA was obtained without any secondary phases such as $\alpha$- or $\beta$-tricalcium phosphate (TCP) for both the powders and the coatings.The Si-HA coating was about $5\;{\mu}m$ thick, had a densemicrostructure with no cracks or pores. In addition, the proliferation and alkaline phosphatase (ALP) activity of MC3T3-E1 preosteoblast cells grown on the Si-HA coatings were significantly higher than those on the bare Ti and pure HA coating. These results revealed the stimulatory effects induced by siliconsubstitution on the cellular response to the HA coating.

  • PDF

Correlation between Physicochemical Properties of Various Commercial TiO2 Supports and NH3-SCR Activities of Ce/Ti Catalysts (다양한 상용 TiO2 담체의 물리화학적 특성과 Ce/Ti 촉매의 SCR 반응활성과의 상관성 연구)

  • Kwon, Dong Wook;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2015
  • Ceria supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method. We confirmed that the correlation between physicochemical properties of $TiO_2$ supports and SCR activities. Physicochemical properties of the various $TiO_2$ were evaluated using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), and pH analysis. Ce/Ti catalyst exhibited different SCR activities with respect to physicochemical properties of $TiO_2$. An excellent activity was obtained as the surface area of $TiO_2$ increased. In the case of CeOx surface density, the excellent activity in a range of $2.5{\sim}14.5CeOx/nm^2$ was achieved and the activity tended to decrease above $14.5CeOx/nm^2$. The O/Ti mole ratio of $TiO_2$ in the range of 1.32 to 1.79 showed an excellent SCR activity. It was also confirmed that the pH of the $TiO_2$ has no effects on the SCR activity. In order to achieve excellent SCR activities, ceria oxide should be supported on $TiO_2$ possessing a high specific surface area and certain O/Ti mole ratio. In addition, the catalyst with the low CeOx surface density resulted from the high dispersed ceria oxide should be prepared.