DOI QR코드

DOI QR Code

Template Synthesis of Ordered-Mesoporous Tin Oxide for Lithium-ion Battery Anode Materials

주형 합성법을 통해 합성된 다공성 주석 산화물을 적용한 리튬이차전지용 음극재 연구

  • Seo, Gyeongju (School of Applied Chemical Engineering, Chonnam National University) ;
  • Choi, Jaecheol (Dept. of Chemical and Biological Eng., Hanbat National University) ;
  • Lee, Yong Min (Dept. of Chemical and Biological Eng., Hanbat National University) ;
  • Ko, Chang Hyun (School of Applied Chemical Engineering, Chonnam National University)
  • 서경주 (전남대학교 응용화학공학부) ;
  • 최재철 (한밭대학교 화학생명공학과) ;
  • 이용민 (한밭대학교 화학생명공학과) ;
  • 고창현 (전남대학교 응용화학공학부)
  • Received : 2014.02.11
  • Accepted : 2014.02.28
  • Published : 2014.05.31

Abstract

Mesoporous tin oxide (meso-$SnO_2$) with 5 nm mesopore and well-aligned $SnO_2$ nanowire-bundles with 5~7 nm diameters were prepared by template synthesis method. In addition to meso-$SnO_2$, meso-$SnO_2$/$SiO_2$, which has almost the same structure as meso-$SnO_2$ including $SiO_2$ used as the template were prepared by the modification of template synthesis. X-ray diffraction, N2 adsorption-desorption isotherms, transmission electron microscopy observed structures of meso-$SnO_2$ and meso-$SnO_2$/$SiO_2$. Although the meso-$SnO_2$/$SiO_2$ showed some positive evidences to suppress the volume change of meso-$SnO_2$ through cyclic voltammogram, electrochemical impedance spectroscopy, and voltage profiles during cycling, its cycle life was not improved highly to address modified structural effects. Thus, further study might be done to control the nanostructure of meso-$SnO_2$/$SiO_2$ for enhanced cycle performance.

5 nm의 중형기공(mesopore)을 지녔으며 5~7 nm 굵기의 산화주석($SnO_2$) 나노선 다발이 잘 정렬된 meso-$SnO_2$를 주형합성법을 이용해서 제조하였다. 또한 주형합성법을 변형시켜서 5~7 nm 굵기의 동일한 나노선 다발 사이에 존재하는 중형기공에 주형으로 사용되었던 실리카($SiO_2$)를 일부 남긴 meso-$SnO_2$와 실리카의 복합체인 meso-$SnO_2$/$SiO_2$도 제조하였다. X-선 회절, 질소흡착법, 투과전자현미경을 이용해서 meso-$SnO_2$와 meso-$SnO_2$/$SiO_2$의 구조를 확인하였다. meso-$SnO_2$/$SiO_2$는 meso-$SnO_2$에 비해서 충방전시 발생하는 부피 팽창을 완화할 수 있을 것으로 예측했으며, 순환전압전류곡선, 교류 임피던스 분석, 충방전 전압 Profile 변화를 통해 부피 팽창 완화 효과를 확인하였다. 하지만, 수명 특성 측면에서는 구조 제어 효과가 미비하여, 향후 이를 개선하는 연구가 진행되어야 한다.

Keywords

References

  1. L.-F. Cui, Y. Yang, C.-M. Hsu, and Y. Cui, 'CarbonSilicon CoreShell Nanowires as High Capacity Electrode for Lithium Ion Batteries' Nano Lett., 9, 3370 (2009). https://doi.org/10.1021/nl901670t
  2. B. M. Bang, J. I. Lee, H. Kim, J. Cho, and S. Park, 'High-Performance Macroporous Bulk Silicon Anodes Synthesized by Template-Free Chemical Etching' Adv. Energy Mater., 2, 878 (2012). https://doi.org/10.1002/aenm.201100765
  3. B. Scrosati, J. Hassoun, and Y.-K. Sun, 'Lithium-ion batteries. A look into the future' Energy Environ. Sci., 4, 3287 (2011). https://doi.org/10.1039/c1ee01388b
  4. X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, and L. A. Archer, 'Template-Free Synthesis of $SnO_2$ Hollow Nanostructures with High Lithium Storage Capacity' Adv. Mater., 18, 2325 (2006). https://doi.org/10.1002/adma.200600733
  5. J. F. Ye, H. J. Zhang, R. Yang, X. G. Lim, and L. M. Qi, 'Morphology-Controlled Synthesis of $SnO_2$ Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithium-Ion Batteries' Small, 6, 296 (2010). https://doi.org/10.1002/smll.200901815
  6. M. A. J. Aragon, B. Leon, C. P. Vicente, J. L. Tirado, A.V. Chadwick, A. Berko, and S. Y. Beh, 'Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries' Chem. Mater., 21, 1834 (2009). https://doi.org/10.1021/cm803435p
  7. C. Peng, B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, and J. Yang, 'Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity' ACS Nano, 6, 1074 (2012). https://doi.org/10.1021/nn202888d
  8. H. Wang, Q. Pan, J. Zhao, G. Yin, and P. Zuo, 'Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries' J. Power Sources, 167, 206 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.008
  9. J. C. Park, J. Kim, H. Kwon, and H. Song,' Gram-Scale Synthesis of $Cu_2O$ Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials' Adv. Mater., 21, 803 (2009). https://doi.org/10.1002/adma.200800596
  10. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. R. Subba, and B. V. R. Chowdari, ${\alpha}$-$Fe_2O_3$ Nanoflakes as an Anode Material for Li-Ion Batteries' Adv. Funct. Mater., 17, 2792 (2007). https://doi.org/10.1002/adfm.200601186
  11. Y. He, L. Huang, J.-S. Cai, X. M. Zheng, and S. G. Sun, 'Structure and electrochemical performance of nanostructured $Fe_3O_4$/carbon nanotube composites as anodes for lithium ion batteries' Electrochim. Acta, 55, 1140 (2010). https://doi.org/10.1016/j.electacta.2009.10.014
  12. X. Fang, B. Guo, Y. Shi, B. Li, C. Hua, C. Yao, Y. Zhang, Y. S. Hu, and Z. Wang, G. D. Stucky, and L. Chen,' Enhanced Li storage performance of ordered mesoporous $MoO_2$ via tungsten doping' Nanoscale, 4, 1541 (2012). https://doi.org/10.1039/c2nr12017h
  13. S. A. Needham, G. X. Wang, and H. K. Liu, 'Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries' J. Power Sources, 159, 254 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.025
  14. H. Liu, G. Wang, J. Liu, S. Qiao, and H. Ahn, 'Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance' J. Mater. Chem., 21, 3046 (2011). https://doi.org/10.1039/c0jm03132a
  15. J. Gao, M. A. Lowe, and H. C. D. Abruna, 'Spongelike Nanosized $Mn_3O_4$ as a High-Capacity Anode Material for Rechargeable Lithium Batteries', Chem. Mater., 23, 3223 (2011). https://doi.org/10.1021/cm201039w
  16. X. W. Lou, J. S. Chen, P. Chen, and L. A. Archer, 'Onepot synthesis of carbon-coated $SnO_2$ nanocolloids with improved reversible lithium storage properties', Chem. Mater., 21, 2868 (2009). https://doi.org/10.1021/cm900613d
  17. T.-H. Kang, H.-S. Kim, W.-I. Cho, B.-W. Cho, and J.-B. Ju, 'The cycling performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery', J. Korean Electrochem. Soc., 5(2), 52-56 (2002). https://doi.org/10.5229/JKES.2002.5.2.052
  18. C.-H. Jeong, S.-A. Kim, B.-W. Cho, and B.-K. Na 'Electrochemical Characteristics of Sn Added $Li_4Ti_5O_{12}$ as an Anode Material', J. Korean Electrochem. Soc., 14, 16-21 (2011). https://doi.org/10.5229/JKES.2011.14.1.016
  19. X. W. Lou, C. M. Li, and L. A. Archer, 'Designed Synthesis of Coaxial $SnO_2$@carbon Hollow Nanospheres for Highly Reversible Lithium Storage' Adv. Mater., 21, 2536 (2009). https://doi.org/10.1002/adma.200803439
  20. C.-M. Wang, W. Xu, J. Liu, J.-G. Zhang, L. V. Saraf, B. W. Arey, D. Choi, Z.-G. Yang, and J. Xiao, S. Thevuthasan and D. R. Baer, 'In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a $SnO_2$ Nanowire during Lithium Intercalation', Nano Lett., 11, 1874 (2011). https://doi.org/10.1021/nl200272n
  21. F. Jiao, J. Bao, A. H. Hill, and P. G. Bruce, 'Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries', Angew. Chem., Int. Ed., 47, 9711 (2008). https://doi.org/10.1002/anie.200803431
  22. S. J. Han, B. C. Jang, T. Kim, S. M. Oh, and T. Hyeon, 'Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes', Adv. Funct. Mater., 15, 1845 (2005). https://doi.org/10.1002/adfm.200500243
  23. H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, and Y. L. Cao, 'Multilayered nanocrystalline $SnO_2$ hollow microspheres synthesized by chemically induced selfassembly in the hydrothermal environment', J. Phys. Chem. B, 111, 14067 (2007).
  24. Q. R. Zhao, Y. Xie, T. Dong, Z. G. Zhang, 'OxidationCrystallization Process of Colloids: An Effective Approach for the Morphology Controllable Synthesis of $SnO_2$ Hollow Spheres and Rod Bundles', J. Phys. Chem. B, 111, 11598 (2007).
  25. H. M. Liu, Y. G. Wang, K. X. Wang, E. Hosono, and H. S. Zhou, 'Design and synthesis of a novel nanothorn $VO_2(B)$ hollow microsphere and their application in lithium-ion batteries', J. Mater. Chem., 19, 2835 (2009). https://doi.org/10.1039/b821799h
  26. D. Deng and J. Y. Lee, 'Hollow Core-Shell Mesospheres of Crystalline $SnO_2$ Nanoparticle Aggregates for High Capacity $Li^+$ Ion Storage', Chem. Mater., 20, 1841 (2008). https://doi.org/10.1021/cm7030575
  27. X. W. Lou, D. Deng, J. Y. Lee, and L. A. Archer, 'Thermal formation of mesoporous single-crystal $Co_3O_4$ nano-needles and their lithium storage properties', J. Mater. Chem., 18, 4397 (2008). https://doi.org/10.1039/b810093d
  28. H. Kim and J. Cho, 'Hard templating synthesis of mesoporous and nanowire $SnO_2$ lithium battery anode materials', J. Mater. Chem., 18, 771 (2008). https://doi.org/10.1039/b714904b
  29. K. T. Lee, Y. S. Jung, and S. M. Oh, 'Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries', J. Am. Chem. Soc., 125, 5652 (2003). https://doi.org/10.1021/ja0345524
  30. A. Kay and M. Gratzel 'Dye-Sensitized CoreShell Nanocrystals: Improved Efficiency of Mesoporous Tin oxide Electrodes Coated with a Thin Layer of an Insulating Oxide', Chemistry of Materials, 14, 2930 (2002). https://doi.org/10.1021/cm0115968
  31. L. Yuan, K. Konstaninov, G. X. Wang, H. K. Liu, S. X. Dou, 'Nano-structured $SnO_2$-carbon composites obtained by in situ spray pyrolysis method as anodes in lithium batteries', Journal of Power Sources, 146, 180-184 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.008
  32. J. S. Beck, J. C. V., W. J. Roth, M. E. Leonowicz, C. T. Kresge, C. T.-W. C. K. D. Schmitt, D. H. Olson, E. W. Sheppard, S. B. McCullen, and J. B. Higgins, 'A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates', J. Am. Chem. Soc., 114, 10834, (1992). https://doi.org/10.1021/ja00053a020
  33. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, 'Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores', Science, 279, 548(1998). https://doi.org/10.1126/science.279.5350.548
  34. T.-W. Kim, F. Kleitz, B. Paul, and R. Ryoo, 'MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock CopolymerButanolWater System', J. Am. Chem. Soc., 127, 7601 (2005). https://doi.org/10.1021/ja042601m
  35. X. K. Wang, Z. Q. Li, Q. Li, C. B. Wang, A. L. Chen, Z. W. Zhang, R. H. Fan, and L. W. Yin, 'Ordered mesoporous $SnO_2$ with a highly crystalline state as an anode material for lithium ion batteries with enhanced electrochemical performance', CrystEngComm., 15, 3696, (2013). https://doi.org/10.1039/c3ce40087e
  36. Z. Wen, Q. Wang, Q. Zhang, and J. Li, Adv. Funct. Mater., 17, 2772 (2007). https://doi.org/10.1002/adfm.200600739
  37. N. A. Kaskhedikar, Maier, 'Lithium Storage in Carbon Nanostructures', Adv. Mater., 21, 2664 (2009). https://doi.org/10.1002/adma.200901079
  38. M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou, and H. K. Liu, 'The Effect of Morphological Modification on the Electrochemical Properties of $SnO_2$ Nanomaterials' Adv. Funct. Mater., 18, 455 (2008). https://doi.org/10.1002/adfm.200700407

Cited by

  1. Electrochemical Property of CNT/Co3O4Nanocomposite for Anode of Lithium Batteries vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.187