• 제목/요약/키워드: Diffraction

검색결과 8,645건 처리시간 0.037초

조선시대 궁궐 도배지 특성 연구 - 경복궁, 창덕궁, 칠궁을 중심으로 - (A study on characteristics of palace wallpaper in the Joseon Dynasty - Focusing on Gyeongbokgung Palace, Changdeokgung Palace and Chilgung Palace -)

  • 김지원;김지선;김명남;정선화
    • 헤리티지:역사와 과학
    • /
    • 제56권1호
    • /
    • pp.80-97
    • /
    • 2023
  • 본 연구에서는 조선시대 후기부터 현재까지 보존된 경복궁, 창덕궁 그리고 칠궁 내 일부 전각의 도배지를 채취하여 조선 왕실에서 도배지로 사용한 종이의 종류와 특징을 파악하고자 하였다. 이에 첫 번째로, 고문헌 조사를 바탕으로 왕실에서 사용된 도배지 기록을 통해 왕실에서의 도배 특성을 확인하였다. 두 번째로, 건립 시기가 비교적 분명한 전각을 대상으로 현장 조사를 실시하여 시료확보 후 초배지 분석을 실시하였다. 따라서 왕실 도배지로 활용된 한지의 주원료를 확인하였으며, 청색 장식지 분석을 통해 격식을 갖춰야 하는 공간에 사용된 청색 발색물질(염료·안료)의 종류를 파악하였다. 분석을 통해 확인한 결과를 토대로 조선시대 궁궐 도배지와 관련한 고문헌 기록과 대조함으로써 문헌의 기록과 현존 도배지 실물을 확인하고, 향후 궁궐 도배지의 보수 시 문화재 복원의 기초자료를 제공하고자 하였다. 17~20세기 영건의궤류 36건 등에 기록된 도배 관련 내용을 추출하여 시기별 도배지 종류 변화, 사용처에 따른 도배지 종류 등의 내용을 검토한 결과, 의궤 제작용 한지와 도배용 한지의 명칭이 다르지 않아 조선시대에는 문서지와 도배지를 구분하지 않고 사용했음을 알 수 있었다. 또한 시대별 도배지의 종류는 차이가 있지만 백지, 후백지, 저주지, 초주지, 각장이 도배의 기저를 이루는 것은 조선 말기까지 지속된 것이 확인된다. 궁궐 벽체와 직접 붙어있던 면의 초배지를 대상으로 섬유의 형태학적 특성 및 정색 반응(KS M ISO 9184-4: 그라프 "C" 염색 시험)을 통해 섬유 식별을 실시한 결과, 왕실에서 도배지로 활용된 한지의 주원료를 확인하였으며 전각의 건립 시기에 따라 당시 한지를 제작하는 데 사용한 지료의 원재료를 파악하였다. 또한 청색 장식지의 발색원료를 광학현미경, 자외-가시광 분광분석(UV-Vis), X선 회절분석(XRD)을 통해 분석한 결과 격식을 갖춰야 하는 공간에 사용된 청색 장식지의 염료 및 안료의 종류를 파악하였으며 청색을 내기 위한 원료로서 쪽, 청금석, 코발트블루 등이 사용된 것이 확인되었다.

중앙(中央) 아세아(亞細亞) 벽화(壁畵) 보존처리(保存處理)(I) - 벽화(壁畵)(본(本)4074, 본(本)4096)의 상웅조사(狀熊調査) - (The Investigation and Conservation of Central Asia Wall Painting (No. 4074 and 4096))

  • 강형태;이용희;유혜선;김연미;조연태;靑木繁夫;山本記子;大林賢太郞
    • 박물관보존과학
    • /
    • 제3권
    • /
    • pp.43-50
    • /
    • 2001
  • 국립중앙박물관은 용산 새 박물관의 전시 유물로 선정된 중앙아시아 벽화의 연차적인 보존처리를 위해 "독립행정법인 일본 동경문화재연구소"와 공동연구를 모색하게 되었다. 2001년에 본4074, 본4096 작은 벽화편 2점의 보존처리를 시작하면서 벽화의 균열 박락 등 손상상태, 구조와 구성재료, 이전 보존처리에서 적용된 재료와 방법에 대한 기초조사를 실시하였다. 조사결과 본4074, 본4096 2점의 벽화는 흙과 지푸라기를 반죽하여 만든 벽체에 석고를 발라 바탕으로 하고 그 위에 채색을 한 것으로 나타났으며 벽체 속에 포함된 지푸라기의 방사선 탄소연대측정 결과 본 벽화는 10세기 말에서 13세기 초에 만들어진 것으로 나타났다. 또한 X-선회절 분석 결과 화면의 흰색 바탕은 gypsum[Ca(SO4)·2H2O]과 CaSO4, Calcite(CaCO3)가 적색계통은 연단(鉛丹:Pb3O4)과 led arsenate[Pb(As2O6)], 녹색계통은 Cuprite(Cu2O)와 arsenolite(As2O3), arsenic oxide(As2O4) 등이 사용된 것으로 조사되었다.

조선 초기 조운선(마도4호선)에서 출수된 숫돌의 비파괴 재질 분석 연구 (Non-Destructive Material Analysis of Whetstones Discovered in Grain Transport Ship of the Early Joseon Period)

  • 공달용;김재환;박은영;조용철;양기홍
    • 자원환경지질
    • /
    • 제56권6호
    • /
    • pp.661-674
    • /
    • 2023
  • 충남 태안 해역에서는 2014년 국내 수중발굴 역사상 처음으로 조선시대 선박이 발견되어 마도4호선으로 명명되었다. 마도4호선은 발굴된 유물을 통해 1417~1425년(태종~세종) 사이 나주에서 공물을 싣고 한양으로 가다 침몰한 조운선임이 밝혀졌다. 마도4호선의 선체에서는 공물로 적재된 총 27점의 미사용 숫돌이 발견되었다. 27점 숫돌은 모두 폭이 좁고 긴 막대기 형태이며. 길이, 폭, 두께 및 무게의 평균값은 각각 161.5mm, 36.1mm, 22.7mm 및 253.2g 이다. X-선 회절 분석 결과, 구성광물은 석영, 알칼리장석, 사장석으로 고해상도 디지털 실체현미경 분석 결과와 유사하다. 마도-2672와 2673의 평균 공극률은 각각 2.69%와 1.78%, 평균 표면 경도는 각각 807.2HLD와 834.5HLD로 공극률이 일정 이상 증가하면 표면 경도 감소에 영향을 미치는 것으로 해석된다. 이들은 모두 장석질 사암(Arkose)이며 SiO2의 함량은 평균 74.51%로 숫돌로서 적합함이 확인되었다. 27점의 숫돌은 SiO2의 함량을 기준으로 구분할 때, 중간 숫돌에 해당한다. 이들 숫돌은 크기와 무게가 작고 휴대하기 편리한 특징을 갖고 있어 비고정식 숫돌의 한 종류로 추정되며, 조선시대 무기 연마와 공예품 제작 등 특수분야에 주로 사용된 것으로 판단된다.

폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석 (Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder)

  • 이향선;송훈
    • 한국건축시공학회지
    • /
    • 제24권2호
    • /
    • pp.181-191
    • /
    • 2024
  • 석회석은 시멘트의 주원료로써 90% 이상을 사용하고 있으며, 고온 소성 과정에서 및 석회석의 탈탄산 반응으로 많은 양의 CO2를 배출한다. 이에 석회석 사용량 저감을 위해 원료를 대체할 수 있는 부산물에 관한 연구들이 진행 중이다. 또한 광물 탄산화는 기체인 CO2를 탄산염 광물로 전환하는 기술로 산업시설에서 배출되는 CO2를 포집하여 광물로 저장 및 자원화할 수 있다. 한편, 건설폐기물은 계속적으로 증가하는 추세로, 폐콘크리트는 많은 부분을 차지하고 있다. 폐콘크리트는 파쇄 및 분쇄를 통해 순환골재로써 활용되고 있으나 이때 발생하는 폐콘크리트 미분말은 유효하게 재이용 되지 못하고 대부분 폐기 또는 매립되는 실정이다. 이에 본 연구에서는 폐콘크리트를 석회석 대체재로써 활용하여 광물 탄산화 기술을 적용할 수 있는 이산화탄소 반응경화 시멘트 제조 가능성을 확인하고자 한다. 폐콘크리트 미분말 치환율 및 이산화탄소 반응 경화 시멘트의 주요 광물이 생성되는 조건인 SiO2/(CaO+SiO2) 몰비에 따른 광물 분석 결과, 폐콘크리트 미분말 치환율과 SiO2/(CaO+SiO2) 몰비가 높을수록 주요 광물인 Pseudowollastonite와 Rankinite 생성량이 증가하였다. 또한 세 가지 SiO2/(CaO+SiO2) 몰비에서 공통적으로 폐콘크리트 미분말을 50% 치환한 경우 Gehlenite가 생성되었으며, 생성량 또한 유사하였다. 이는 콘크리트 미분말에 함유하고 있는 Al2O3 성분이 CaO와 SiO2와 반응하여 Gehlenite가 합성된 것으로 판단된다. Gehlenite의 경우 Pseudowollastonite와 Rankinite와 같이 광물 탄산화를 통해 탄산염 광물인 CaCO3를 생성하는 산화물로써 이는 Al2O3가 함유된 산업부산물을 원료로 사용하는 경우 이산화탄소 반응경화 시멘트의 광물로써 활용이 가능할 것으로 기대한다.

α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능 (Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support)

  • 한성우;신민창;장학룡;황재연;고민영;김시은;정창훈;박정훈
    • 멤브레인
    • /
    • 제34권1호
    • /
    • pp.50-57
    • /
    • 2024
  • 본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500℃의 조건에서 18 h 동안 열처리를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 ㎛, Pd-Ag-Cu 분리막의 두께는 3.54 ㎛로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450℃, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450℃, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450℃, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.

$750^{\circ}C$ 에서 탈수한 $Cd_6-A$의 결정구조와 이 결정을 세슘 증기로 반응시킨 결정구조 (Crystal Structures of $Cd_6-A$ Dehydrated at $750^{\circ}C$ and Dehydrated $Cd_6-A$ Reacted with Cs Vapor)

  • 장세복;김양
    • 대한화학회지
    • /
    • 제37권2호
    • /
    • pp.191-198
    • /
    • 1993
  • $Cd^{2+}$ 이온으로 이온 교환된 제올라이트 A를 $750^{\circ}C$에서 $2{\times}10^{-6}$ torr의 진공하에서 탈수한 구조(a = 12.204(1) $\AA$)와 이 결정에 $250^{\circ}C$에서 12시간도안 약 0.1 torr의 Cs 증기로 반응시킨 구조 (12.279(1) $\AA$)를 $21^{\circ}C$에서 입방공간군 Pm3m를 사용하여 단결정 X-선 회절법으로 해석하고 정밀화하였다. 탈수한 $Cd_{6-}A$의 구조는 Full-matrix 최소자승법 정밀화 계산에서 I > $3{\sigma}(I)$인 151개의 독립반사를 사용하여 최종 오차인자를 $R_1=$ 0.081, $R_2=$ 0.091까지 정밀화 계산하였고, 이 결정을 세슘 증기로 반응시킨 구조는 82개의 독립반사를 사용하여 $R_1=$ 0.095 and $R_2=$ 0.089까지 각각 정밀화시켰다. 탈수한 $Cd_{6-}A$의 구조에서는 단위세포당 6개의 $Cd^{2+}$ 이온은 O(3)의 (111) 평면에서 소다라이트 동공쪽으로 약 $0.460\AA$ 들어간 자리에 위치하였다(Cd-O(3) = 2.18(2) $\AA$ and O(3)-Cd-O(3) = $115.7(4)^{\circ}$ 또 약 0.1 torr의 Cs 증기를 써서 $250^{\circ}C$에서 반응시킨 결정에서는 탈수한 $Cd_{6-}A$의 6개의 $Cd^{2+}$ 이온은 모두 Cs 증기에 의해 환원되고 세슘은 4개의 다른 결정학적 자리에 위치하였다. 3개의 $Cs^+$ 이온은 $D_{4h}$의 대칭을 가지고 8-링의 중심에 위치하였다. 단위세포당 약 9개의 $Cs^+$ 이온은 3회 회전축상에 위치하였다. 그 중 약 7개의 $Cs^+$ 이온은 큰 동공내의 3회 회전축상의 6-링에 위치하고 2개의 $Cs^+$ 이온은 소다라이트 동공내에 존재한다. 0.5개의 $Cs^+$ 이온은 큰 동공의 4-링과 마주보는 위치에 위치한다. 이 구조에서 제올라이트 골조의 음하전을 상쇄시키는데 필요한 단위세포당 12개의 $Cs^+$ 이온보다 많은 약 12.5개의 Cs 종이 존재한다. 즉 $Cs^0$가 흡착되었음을 알 수 있다. 또 관측한 점유수에서 두 종류의 단위 세포 배열 즉 $Cs_{12}-A$$Cs_{13}-A$가 존재함을 알 수 있다. 단위세포의 약 50%는 2개의 $Cs^+$ 이온이 소다라이트 동공내에서 6-링 가까이에 존재하고 6개의 $Cs^+$ 이온은 큰 동공내에서 6-링 가까이에 위치한다. 1개의 $Cs^+$ 이온은 큰 동공내에서 4-링과 마주보는 위치에 있다. 단위세포의 나머지 50%는 소다라이트 동공내에 2개의 Cs종이 위치하고 큰 동공내에 있는 8개의 $Cs^+$ 이온 중 2개의 $Cs^+$ 이온과 결합하여 선형의 $(Cs_4)^{3+}$ 클라스터를 형성하고 있다. 이 클라스터는 3회 회전축상에 놓여있고 소다라이트 동공 중심을 지나가고 있다. 모든 단위세포는 3개의 $Cs^+$ 이온이 D4h의 대칭을 가지고 8-링 중심에 위치하고 있다.

  • PDF

알칼리 처리된 타이타늄 표면에 대한 골아 유사세포의 세포 활성도 (Cellular activities of osteoblast-like cells on alkali-treated titanium surface)

  • 박진우;이덕혜;여신일;박광범;최석규;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제37권sup2호
    • /
    • pp.427-445
    • /
    • 2007
  • 임플란트와 골 사이의 결합력을 증가시키기 위하여 타이타늄 표면에 변화를 주기위한 많은 연구들이 진행되고 있다. 타이타늄의 표면 구조나 미세 지지도의 변화가 임플란트에 대한 세포의 반응에 영향을 미치며, 골아 유사세포는 표면 조도가 높은 타이타늄 표면에 더 잘 부착하며, 세포외 기질의 합성과 광물화 결정이 더 잘 일어난다고 알려져 있다. 그러나 대부분의 연구들은 마이크로 단위의 미세 지지도에 대한 연구들이고 나노 단위의 미세 지지도에 대한 연구들은 미미하다. 이에 본 연구에서는 ROS 17/2.8 cell line을 이용하여 기계적 처리만한 군을 대조군으로 하여 blasting 처리한 마이크로 단위의 미세 지지도 표면과 알칼리 처리된 나노 단위의 미세 지지도 표면에 대한 골아 유사세포의 세포 부착양상, 증식 그리고 골아 유사세포의 표식인자 발현양상 등을 상호 비교하여 골아 유사세포에 미치는 영향을 관찰하고자 하였다. SEM을 이용한 미세 지지도 관찰에서 알칼리 처리군에서는 약 200mm의 초미세 다공성의 양상을 나타내었고, blasting 처리한 군에서는 $10\;{\mu}m$ 이하의 움푹 파인 양상을 보였다. 표면조도 측정에 있어서는 blasting 처리한 군에서 기계적 처리와 알칼리 처리된 군보다 더 높은 표면 조도를 보였으며 이는 통계학적으로 유의한 차이를 나타내었다 (p<0.01). 표면결정성 분석에서는 알칼리처리 군에서 anatase와 rutile결정형이 보였으나, blasting 처리한 군과 기계적 처리 군에서는 관찰되지 않았다. 골아 유사세포 1시간 배양 후의 전자현미경 관찰에서 모든 군의 세포는 부착 및 전개 과정을 보였고, 3시간 배양에서는 모든 군의 세포가 더 많이 전개되었으나, blasting 처리한 군과 알칼리처리 군에서 세포가 다소 더 불규칙한 형태를 나타내었다. 24시간 배양에서는 모든 군의 세포에서 완전히 전개가 일어난 양상을 보였다. 1, 4, 7일간 세포배양 후 세포활성을 평가하기 위한 MTT assay에서는 모든 군에서 시간이 증가함에 따라 세포수가 증가하였으며, 1일째에 blasting 처리한 군과 알칼리처리 군에서 기계적 처리 군에 비해 세포활성도가 통계학적으로 유의한 증가를 보였다(p<0.01). 골아 유사세포 표식인자인 osteopontin, alkaline phosphatase, ${\alpha}\;1(1)$ collagen의 유전자 발현양상을 관찰해 본 결과, osteopontin, alkaline phosphatase, ${\alpha}\;1(1)$ collagen의 유전자 발현양상이 세 군 모두에서 유의한 차이는 관찰할 수 없었으나, blasting 처리한 군과 알칼리처리 군에서 기계적 처리 군에 비해 유전자 발현양상이 다소 증가하는 경향을 보였다. 결론적으로 blasting 처리한 마이크로 단위의 미세 지지도 표면과 알칼리 처리된 나노 단위의 미세 지지도 표면이 기계적 처리 군에 비해 골아 유사세포의 기능을 촉진시키나, 알칼리 처리된 나노 단위의 미세 지지도 표면은 blasting 처리한 마이크로 단위의 미세 지지도 표면이 골아 유사세포의 기능에 미치는 영향을 압도하지는 않는 것으로 사료된다.

제올라이트 X의 두 개의 무수물 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$$Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$의 결정구조 (Two Anhydrous Zeolite X Crystal Structures, $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}\;and\;Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$)

  • 최은영;김양
    • 대한화학회지
    • /
    • 제43권4호
    • /
    • pp.384-385
    • /
    • 1999
  • $Ca^{2+}$ 이온과 $Tl^+$ 이온으로 치환되고 완전히 진공 탈수된 제올라이트 X결정 $Ca_{18}Tl_{56}Si_{100}Al_{92}O_{384}$ ($Ca_{18}Tl_{56}$-X;${\alpha}=24.883(4){\AA}$)와 $Ca_{32}Tl_{28}Si_{100}Al_{92}O_{384}$ ($Ca_{32}Tl_{28}$-X;${\alpha}=24.973(4){\AA}A$)의 구조를 21(1)TEX>$^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 그 구조를 정밀화 하였다 $Ca_{18}Tl_{56}$-X 결정은 0.045 M $Ca(NO_3)_2$와 0.005 M $TINO_3$ 혼합용액으로 흐름법을 이용하여 이온 교환하였다. $Ca_{32}Tl_{28}$-X는 이와 유사하게 0.0495 M $Ca(NO_3)_2$ 와 0.0005 M $TINO_3$ 혼합용액을 사용하였다. 각 결정은 360$^{\circ}C$, $2{\times}10^{-6}$ Torr에서 탈수시켰다. $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조는 각각 I > 3${\sigma}$ (I)인 382 및 472개의 회절 반사점을 사용하여 각각 $R_1=0.039,\;R_2=0.036$$R_1=0.046,\;R_2=0.045$의 최종 오차 지수 값을 얻었다. 탈수된 $Ca_{18}Tl_{56}$-X 및 $Ca_{32}Tl_{28}$-X 결정 구조에서, $Ca^{2+}$ 이온과 $Tl^+$ 이온은 서로 틀리는 6개의 결정학적 자리에 위치한다. 16개의 $Ca^{2+}$ 이온은 D6R의 중심인 팔면체 자리 I을 채운다 ($Ca_{18}Tl_{56}$-X : Ca-O=2.42(1) ${\AA}$ 및 O-Ca-O=93.06(4)$^{\circ}$; $Ca_{32}Tl_{28}$-X Ca-O=2.40(1) ${\AA}$ 및 O-Ca-O=93.08(3)$^{\circ}$). $Ca_{18}Tl_{56}$-X 구조에서는 2개의 $Ca^{2+}$ 이온은 자리 II (Ca-O=2.35(2) ${\AA}$ 및 O-Ca-O=111.69(2)$^{\circ}$)를 점유하고 26개의 $Tl^+$ 이온은 큰 동공 내 마주보는 S6R의 자리 II에 점유한다. 각기 3개의 산소로 만들어지는 평면으로부터 1.493 ${\AA}$ 떨어져 있다(Tl-O=2.70(8)${\AA}$ 및 O-Tl-O=92.33(4)$^{\circ}$). 약 4개의 $Tl^+$ 이온은 세 개의 산소로 만들어지는 평면으로부터 소다라이트 동공쪽으로 1.695${\AA}$ 떨어진 자리 II에 위치해 있다(Tl-O=2.81 (1) ${\AA}$ 및 O-Tl-O=87.48(3)$^{\circ}$). 나머지 26개의 $Tl^+$ 이온들은 자리 III'에 분포된다(Tl-O=2.82 (1) ${\AA}$ 및 Tl-O=2.88(3) ${\AA}$). Ca_{32}Tl_{28}$-X 결정 구조에서는 16개의 $Ca^{2+}$ 이온과 15개의 $Tl^+$ 이온들이 자리 II를 점유하고 있다(Ca-O=2.26(1) ${\AA}$ 및 O-Ca-O=119.14(4)$^{\circ}$; Tl-O=2.70(1) ${\AA}$ 및 O-Tl-O=92.38$^{\circ}$). 한 개의 $Tl^+$ 이온들은 자리 II'를 점유한다. 나머지 12개의 $Tl^+$ 이온들은 자리IlI'에 분포된다.

  • PDF

부분적으로 스트론튬이온으로 교환되고 탈수된, 제올라이트 X의 결정구조 (Crystal Structures of Dehydrated Partially $Sr^{2+}$-Exchanged Zeolite X, $Sr_{31}K_{30}Si_{100}A1_{92}O_{384}\;and\;Sr_{8.5}TI_{75}Si_{100}AI_{92}O_{384}$)

  • 김미정;김양;칼세프
    • 한국결정학회지
    • /
    • 제8권1호
    • /
    • pp.6-14
    • /
    • 1997
  • 제올라이트 X에 $Sr^{2+}$$K^+$ 이온이 교환된 $Sr_{31}K_{30}-X$$Sr^{2+}$$Tl^+$ 이온이 교환된 $Sr_{8.5}Tl_{75}$의 결정구조를 공간군 Fd3로 $21(1)^{\circ}C$에서 단결정 X선 결정학적 방법으로 해석하였다. 각각의 결정은 $Sr(ClO_4)_2$와 (K 혹은 Tl)$NO_3$의 몰 비가 1 : 5인 용액을 사용해서 흐름 법으로 5일 동안 이온 교환시키고 $360^{\circ}C$에서 진공탈수 시켜 두 결정을 얻었다. 이들 결정은 회절강도가 $I>2{\sigma}(I)$인 293개와 351개의 회절반사를 사용하여 최종오차인자가 $R_1=0.072,\;R_w=0.057$$R_l= 0.058,\;R_w=0.044$까지 각각 정밀화하였다. $Sr_{31}K_{30}-X$결정에서 $Sr^{2+}$ 이온과 $K^+$ 이온은 모두 다섯 개의 서로 다른 결정학적 자리에 존재하였다. 단위세포당 16개의 $Sr^{2+}$ 이온은 결정학적 자리 I인 D6R의 중심에 각각 위치하고 D6R 모두를 채우고 있다. 나머지 15개의 $Sr^{2+}$ 이온과 17개의 $K^+$ 이온은 큰 동공 속에 있는 결정학적 자리II에 위치하고 세 개의 산소이온이 이루는 평면에서 각각 $0.45{\AA},\;1.06{\AA}$ 큰 동공속으로 이동하여 위치하고 골조산소와 결합거리는 각각 $2.45(1){\AA},\;2.64(1){\AA}$이다. 13개의 $K^+$ 이온은 두 개의 다른 결정학적자리 III'에 위치하며 인접한 산소와의 결합거리는 각각 $2.88(7){\AA}$$3.11(10){\AA}$이다. $Sr_{8.5}Tl_{75}-X$에서는 $Sr^{2+}$이온과 $Tl^+$ 이온이 역시 다섯 개의 서로 다른 결정학적 자리에 위치한다. 약 8.5개의 $Sr^{2+}$ 이온은 결정학적 자리 I에 있으며, 15개의 $Tl^+$ 이온은 D6R의 3회 전축상의 소다라이트내에 있는 결정학적 자리 I'에 있다. 이 $Tl^+$ 이온은 골조산소와의 결합거리가 $2.70(2){\AA}$이며 세 개의 산소가 이루는 평면에서 $1.68{\AA}$ 소다라이트내로 이동하여 위치한다. 32개의 $Tl^{+}$ 이온은 결정학적 자리 II에 존재하고 있으며 산소와의 결합거리를 $2.70(1){\AA}$을 유지하면서 큰 동공속으로 $1.48{\AA}$ 이동하여 위치한다. 약 18개의 $Tl^+$ 이온은 결정학적 자리III에, 또 다른 10개의 $Tl^+$ 이온은 결정학적 자리III'에 존재하고 골조 산소와 각각 $2.86(2){\AA},\;2.96(4){\AA}$의 결합거리를 이룬다.

  • PDF

$Ca^{2+}$ 이온과 $Cs^+$ 이온으로 치환되고 탈수된 두개의 제올라이트 X $Ca_{35}Cs_{22}Si_{100}Al_{92}O_{384}$$Ca_{29}Cs_{34}Si_{100}Al_{92}O_{384}$의 결정구조 (Crystal Structures of Full Dehydrated $Ca_{35}Cs_{22}Si_{100}Al_{92}O_{384}$and $Ca_{29}Cs_{34}Si_{100}Al_{92}O_{384}$)

  • 장세복;송승환;김양
    • 대한화학회지
    • /
    • 제40권6호
    • /
    • pp.427-435
    • /
    • 1996
  • $Ca^{2+}$ 이온과 $Cs^+$ 이온으로 치환되고 완전히 탈수된 제올라이트 X, $Ca_{35}Cs_{22}Si_{100}Al_{92}O_{384}$($Ca_{35}Cs_{22}$-X; a=25.071(1) $\AA)와Ca_{29}Cs_{34}Si_{100}Al_{92}O_{384}$($Ca_{29}Cs_{34}$-X; a=24.949(1) $\AA)$의 두 개의 결정 구조를 $21^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 구조를 정밀화하였다. 탈수한 $Ca_{35}Cs_{22}$-X의 구조를 Full-matrix 최소자승법 정밀화 계산에서 $I>3\sigma(I)$인 322개의 독립 반사를 사용하여 최종 오차 인자를 $R_1$=0.051, $R_2$=0.044까지 정밀화 계산하였고, 탈수한 $Ca_{35}Cs_{22}$-X의 구조는 260개의 독립 반사를 사용하여 $R_1$=0.058, $R_2$=0.055까지 정밀화시켰다. 이들 구조에서 $Ca^{2+}$ 이온과 $Cs^+$ 이온은 서로 다른 5개의 결정학적 자리에 위치하고 있다. 탈수한 $Ca_{35}Cs_{22}$-X 구조에서는 16개의 $Ca^{2+}$ 이온은 D6R의 중심, 자리 I에 모두 채워져 있다(Ca-O=2.41(1) $\AA$, $O-Ca-O=93.4(3)^{\circ}).$ 다른 19개의 $Ca^{2+}$ 이온은 자리 II에 (Ca-O=2.29(1) $\AA$, $O-Ca-O=118.7(4)^{\circ})$, 10개의 $Cs^+$ 이온은 큰 공동에서 6-링 맞은편 II에 채워져 있고, 각각 3개의 산소로 만들어지는 산소 평면으로부터 $1.95\AA$ 들어가 위치하고 $있다(Cs-O=2.99(1)\AA$, $O-Cs-O=82.3(3)^{\circ}).$ 3개의 $Cs^+$ 이온은 산소 평면에서 소다라이트 공동쪽으로 $2.27\AA$ 들어간 자리 II'에서 위치하고 $있다(Cs-O=3.23\AA$, $O-Cs-O=75.2(3)^{\circ}).$ 나머지 9개의 $Cs^+$ 이온은 각각 큰 공동내 2회 회전축을 가지고 있는 48(f) 위치인 자리 III에 통계학적으로 분포하고 $있다(Cs-O=3.25(1)\AA$, Cs-O=3.49(1) $\AA).$ 탈수한 $Ca_{29}Cs_{34}$-X에서 16개의 $Ca^{2+}$ 이온은 자리 I에 채워지고 (Ca-O=2.38(1) $\AA$, $O-Ca-O=94.1(4)^{\circ})$ 13개의 $Ca^{2+}$ 이온은 자리 II에 채워져 있다(Ca-O=2.32(2) $\AA$, $O-Ca-O=119.7(6)^{\circ}).$ 다른 12개의 $Cs^+$ 이온은 자리 II에 채워져 있고, 이들은 산소 평면으로부터 각각 $1.93\AA$ 들어가 위치하고 $있다(Cs-O=3.02(1)\AA$, $O-Cs-O=83.1(4)^{\circ}).$ 7개의 $Cs^+$ 이온은 각각 자리 II'에 위치하고 있고, 산소 평면으로부터 소다라이트 공동으로 $2.22\AA$ 들어가 위치하고 있다(Cs-O=3.21(2) $\AA$, $O-Cs-O=77.2(4)^{\circ}).$ 나머지 16개의 $Cs^+$ 이온은 큰 공동내의 자리 III에 있다(Cs-O=3.11(1) $\AA$, Cs-O=3.46(2) $\AA).Ca^{2+}$ 이온은 자리 I과 자리 II에 우선적으로 위치하고 $Cs^+$ 이온은 너무 커서 자리 I에 채워질 수 없으며 나머지 자리에 채워진다.

  • PDF