• Title/Summary/Keyword: Diffie-Hellman problem

Search Result 66, Processing Time 0.026 seconds

An Efficient Identity-Based Deniable Authenticated Encryption Scheme

  • Wu, Weifeng;Li, Fagen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1904-1919
    • /
    • 2015
  • Deniable authentication protocol allows a sender to deny his/her involvement after the protocol run and a receiver can identify the true source of a given message. Meanwhile, the receiver has no ability to convince any third party of the fact that the message was sent by the specific sender. However, most of the proposed protocols didn't achieve confidentiality of the transmitted message. But, in some special application scenarios such as e-mail system, electronic voting and Internet negotiations, not only the property of deniable authentication but also message confidentiality are needed. To settle this problem, in this paper, we present a non-interactive identity-based deniable authenticated encryption (IBDAE) scheme using pairings. We give the security model and formal proof of the presented IBDAE scheme in the random oracle model under bilinear Diffie-Hellman (BDH) assumption.

Group Key Agreement From Signcryption

  • Lv, Xixiang;Li, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3338-3351
    • /
    • 2012
  • There is an intuitive connection between signcryption and key agreement. Such a connector may lead to a novel way to construct authenticated and efficient group key agreement protocols. In this paper, we present a primary approach for constructing an authenticated group key agreement protocol from signcryption. This approach introduces desired properties to group key agreement. What this means is that the signcryption gives assurance to a sender that the key is available only to the recipient, and assurance to the recipient that the key indeed comes from the sender. Following the generic construction, we instantiate a distributed two-round group key agreement protocol based on signcryption scheme given by Dent [8]. We also show that this concrete protocol is secure in the outsider unforgeability notion and the outsider confidentiality notion assuming hardness of the Gap Diffie-Hellman problem.

Elliptic Curve AMP Protocol (타원곡선을 이용한 AMP 프로토콜)

  • Ahn, Chang-Sup;Heu, Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.712-714
    • /
    • 2001
  • 낮은 엔트로피의 패스워드를 이용하여 안전한 인증 및 키교환을 위해 Diffie-Hellman에 기반한 AMP(Authentication and key agreement via Memorable Password) 프로토콜이 제안되었다. 본 논문에서는 타원곡선 암호화가 가질수 있는 높은 보안성과 효율성을을 위해 타원곡선이산대수문제(Elliptic Curve Discrete Logarithm Problem)에 기반한 EC-AMP (Elliptic Curve-AMP)프로토콜을 제안한다. EC-AMP는 랜덤 오라클(random oracle) 모델에서 여러 가지 공격에 대해 안전하므로 인증 및 키교환이 필요한 네트워크 환경에 패스워드를 이용함으로 얻을수 있는 편의성과 타원곡선이산대수문제가 제공하는 안전성을 보장할 수 있다.

  • PDF

Secure and Efficient Conjunctive Keyword Search Scheme without Secure Channel

  • Wang, Jianhua;Zhao, Zhiyuan;Sun, Lei;Zhu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2718-2731
    • /
    • 2019
  • Conjunctive keyword search encryption is an important technique for protecting sensitive data that is outsourced to cloud servers. However, the process of searching outsourced data may facilitate the leakage of sensitive data. Thus, an efficient data search approach with high security is critical. To solve this problem, an efficient conjunctive keyword search scheme based on ciphertext-policy attribute-based encryption is proposed for cloud storage environment. This paper proposes an efficient mechanism for removing the secure channel and resisting off-line keyword-guessing attacks. The storage overhead and the computational complexity are regardless of the number of keywords. This scheme is proved adaptively secure based on the decisional bilinear Diffie-Hellman assumption in the standard model. Finally, the results of theoretical analysis and experimental simulation show that the proposed scheme has advantages in security, storage overhead and efficiency, and it is more suitable for practical applications.

Secure Key Exchange Protocols against Leakage of Long-tenn Private Keys for Financial Security Servers (금융 보안 서버의 개인키 유출 사고에 안전한 키 교환 프로토콜)

  • Kim, Seon-Jong;Kwon, Jeong-Ok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.119-131
    • /
    • 2009
  • The world's widely used key exchange protocols are open cryptographic communication protocols, such as TLS/SSL, whereas in the financial field in Korea, key exchange protocols developed by industrial classification group have been used that are based on PKI(Public Key Infrastructure) which is suitable for the financial environments of Korea. However, the key exchange protocols are not only vulnerable to client impersonation attacks and known-key attacks, but also do not provide forward secrecy. Especially, an attacker with the private keys of the financial security server can easily get an old session-key that can decrypt the encrypted messages between the clients and the server. The exposure of the server's private keys by internal management problems, etc, results in a huge problem, such as exposure of a lot of private information and financial information of clients. In this paper, we analyze the weaknesses of the cryptographic communication protocols in use in Korea. We then propose two key exchange protocols which reduce the replacement cost of protocols and are also secure against client impersonation attacks and session-key and private key reveal attacks. The forward secrecy of the second protocol is reduced to the HDH(Hash Diffie-Hellman) problem.

Analysis of Certificateless Signcryption Schemes and Construction of a Secure and Efficient Pairing-free one based on ECC

  • Cao, Liling;Ge, Wancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4527-4547
    • /
    • 2018
  • Signcryption is a cryptographic primitive that provides authentication (signing) and confidentiality (encrypting) simultaneously at a lower computational cost and communication overhead. With the proposition of certificateless public key cryptography (CLPKC), certificateless signcryption (CLSC) scheme has gradually become a research hotspot and attracted extensive attentions. However, many of previous CLSC schemes are constructed based on time-consuming pairing operation, which is impractical for mobile devices with limited computation ability and battery capacity. Although researchers have proposed pairing-free CLSC schemes to solve the issue of efficiency, many of them are in fact still insecure. Therefore, the challenging problem is to keep the balance between efficiency and security in CLSC schemes. In this paper, several existing CLSC schemes are cryptanalyzed and a new CLSC scheme without pairing based on elliptic curve cryptosystem (ECC) is presented. The proposed CLSC scheme is provably secure against indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) and existential unforgeability under adaptive chosen-message attack (EUF-CMA) resting on Gap Diffie-Hellman (GDH) assumption and discrete logarithm problem in the random oracle model. Furthermore, the proposed scheme resists the ephemeral secret leakage (ESL) attack, public key replacement (PKR) attack, malicious but passive KGC (MPK) attack, and presents efficient computational overhead compared with the existing related CLSC schemes.

A study on the efficient 1-pass password-based key exchange protocol (효율적인 1-pass 패스워드 기반 키 분배 프로토콜에 관한 연구)

  • Ahn, Sang-Man;Oh, Soo-Hyun;Won, Dong-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11b
    • /
    • pp.1119-1122
    • /
    • 2002
  • 본 논문에서는 Ford와 Kaliski[6]가 제안한 패스워드 은닉 기술을 적용하여 클라이언트와 서버의 은닉 변수로 은닉된 값을 서버가 패스워드 검증자로 사용하는 새로운 패스워드 기반 키 교환 프로토콜을 제안한다. 제안하는 프로토콜은 패스워드 검증자를 비밀리에 보관하여야하는 다른 검증자 기반 방식과 달리 클라이언트와 서버의 은닉 변수가 적용된 검증자를 사용하여 서버의 패스워드 검증자에 대한 안전성을 증가시켰다. 또한 Nyberg-Ruppel 방식[4]을 적용하여, 한번의 통신으로 사용자 인증과 키 교환을 할 수 있다. 본 논문에서 제안하는 프로토콜 안전성은 이산대수문제인 DLP(Discrete logarithm Problem)와 DHP(Diffie-Hellman Problem)[6]에 의존한다. 따라서 DLP와 DHP의 가정하에, 제안된 프로토콜은 오프라인 사진공격(off-line dictionary attack), 서버 데이터 도청(server data eavesdropping), 전향적 안전성(forward secrecy), Denning-Sacco 공격[1]에 대하여 안전하다.

  • PDF

Efficient Password-based Group Key Exchange Protocol (효율적인 패스워드 기반 그룹 키 교환 프로토콜)

  • 황정연;최규영;이동훈;백종명
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.59-69
    • /
    • 2004
  • Password-based authenticated group key exchange protocols provide a group of user, communicating over a public(insecure) channel and holding a common human-memorable password, with a session key to be used to construct secure multicast sessions for data integrity and confidentiality. In this paper, we present a password-based authenticated group key exchange protocol and prove the security in the random oracle model and the ideal cipher model under the intractability of the decisional Diffie-Hellman(DH) problem and computational DH problem. The protocol is scalable, i.e. constant round and with O(1) exponentiations per user, and provides forward secrecy.

Password-Based Authentication Protocol for Remote Access using Public Key Cryptography (공개키 암호 기법을 이용한 패스워드 기반의 원거리 사용자 인증 프로토콜)

  • 최은정;김찬오;송주석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2003
  • User authentication, including confidentiality, integrity over untrusted networks, is an important part of security for systems that allow remote access. Using human-memorable Password for remote user authentication is not easy due to the low entropy of the password, which constrained by the memory of the user. This paper presents a new password authentication and key agreement protocol suitable for authenticating users and exchanging keys over an insecure channel. The new protocol resists the dictionary attack and offers perfect forward secrecy, which means that revealing the password to an attacher does not help him obtain the session keys of past sessions against future compromises. Additionally user passwords are stored in a form that is not plaintext-equivalent to the password itself, so an attacker who captures the password database cannot use it directly to compromise security and gain immediate access to the server. It does not have to resort to a PKI or trusted third party such as a key server or arbitrator So no keys and certificates stored on the users computer. Further desirable properties are to minimize setup time by keeping the number of flows and the computation time. This is very useful in application which secure password authentication is required such as home banking through web, SSL, SET, IPSEC, telnet, ftp, and user mobile situation.

Towards Smart Card Based Mutual Authentication Schemes in Cloud Computing

  • Li, Haoxing;Li, Fenghua;Song, Chenggen;Yan, Yalong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2719-2735
    • /
    • 2015
  • In the cloud environment, users pay more attentions to their data security since all of them are stored in the cloud server. Researchers have proposed many mutual authentication schemes for the access control of the cloud server by using the smart card to protect the sensitive data. However, few of them can resist from the smart card lost problem and provide both of the forward security and the backward security. In this paper, we propose a novel authentication scheme for cloud computing which can address these problems and also provide the anonymity for the user. The trick we use is using the password, the smart card and the public key technique to protect the processes of the user's authentication and key exchange. Under the Elliptic Curve Diffie-Hellman (ECDH) assumption, it is provably secure in the random oracle model. Compared with the existing smart card based authentication schemes in the cloud computing, the proposed scheme can provide better security degree.