• Title/Summary/Keyword: Difficult-to-cut materials

Search Result 115, Processing Time 0.029 seconds

A study on the machinability of SUS304

  • Lim, K.Y.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-41
    • /
    • 1993
  • SUS304 is wellknown as difficult-to-machine materials. It is easy to appear workhardened, and workhardening is one of the causes of groove wear on the tool. In this paper, the author would like to compare the width of flank wear with that of groove wear, and to find whether the groove wear can be used as a criterion of a tool life. The design of the twelve tests provides three levels for each variable (speed: 200m/min, 118m/min, 70m/min; feed: 0.3mm/rev, 0.17mm/rev, 0.1mm/rev; depth of cut: 0.4mm, 0.28mm, 0.2mm). The study of tool-life testing by statistical technique follows usual most scientific sequence. So the tool-life predicting equation is calculated by the method of least squares. The overall adequacy of the model can be verified by the analysis of variance. The results obtained are as follows : 1) When SUS304 is cut in 200(m/min), the width of flank wear is much larger than that of groove wear. 2) In cutting speed 118m/min, flank wear is a little larger than groove wear and in the cutting speed 70m/min, the latter is a little larger so that it is reasonable to determine the tool life according the crierion by groove wear in the low cutting speed (less than 70m/min). 3) Owing to the burr the depth of engagement along the cutting edge is extended toward the shank.

  • PDF

Investigation of Micro Cutting Characteristics for Tungsten-Carbide Green Part (초경 그린파트 마이크로 절삭가공 특성 분석)

  • Kim, G.H.;Jung, W.C.;Yoon, G.S.;Heo, Y.M.;Kwon, Y.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.191-196
    • /
    • 2010
  • Tungsten-carbide as typical difficult-to-cut material has excellent mechanical properties such as high thermal resistivity, mechanical strength and chemical durability. However, it is next to impossible for tungsten-carbide to be fabricated the needed parts by cutting process. In this study, for establishing the micro fabrication method of tungsten-carbide for micro injection or compression molding core, the investigation on micro cutting characteristics of tungsten-carbide green part which is made by powder injection molding process and easy to cut relatively was performed. For this, micro endmilling experiments of tungsten-carbide green part were performed according to various cutting conditions. Finally, the wear trend of micro endmill and the appearance of micro rib according to feed-rate and cutting depth per step were analyzed through SEM images of micro cutting feature and microscope images of micro tools.

A Study on the Coated Characteristics of Ceramic Tools (코팅공구의 절삭성능에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.96-101
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc.. Ceramic toolsare likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ther2efore ceramic tools are suitable for continuous cut in turning not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

  • PDF

A New Technique Development for Measuring Plastic Strain of Precision Machined Surface (정밀가공면의 소성스트레인 측정을 위한 새로운 기법의 개발)

  • 김태영;반야풍;문상돈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.141-147
    • /
    • 1998
  • A plastically deformed layer in the precision machined surface affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the precision machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. A new way is suggested to determine the residual strain in plastically deformed materials by analyzing the plastically deformed layer after a subsequent recrystallization process. This investigation is to explore a new technique for measuring plastic strain in machining applications, and in particular, to and the effect of cutting parameters(rake angle, depth of cut, specific cutting energy), on the plastic strains and strain energy.

  • PDF

Characteristics of Cut Surface by Abrasive Waterjet Cutting of Titanium Alloy (티타늄 합금의 연마제 워터 제트 절단에 의한 절단표면 특성)

  • Chung Nam-Yong;Jin Yun-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.86-93
    • /
    • 2005
  • Abrasive waterjet (AWJ) can provide a more effective means for precision of difficult -to-machining materials such as ceramics and titanium alloys. The present study is focused on the surface roughness of abrasive waterjet cut surfaces. This paper investigated theoretical and experimental surface characteristics associated with abrasive waterjet cutting of titanium alloy Gr2. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness and characteristics on specimen surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of titanium alloy Gr2, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.

High Precision and Effective Grinding using Super Abrasives and ELID (초연삭입자와 ELID를 이용한 고정밀 고능률 연삭가공)

  • Koo, Yang;Kim, Gyung-Nyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • In this study, the grinding characteristics of CBN wheels, such as grinding force and surface roughness, have been compared and analyzed from various working conditions of spindle speed and depth of cut. To actualize high efficient grinding at ceramic and silicon nitride material, electrolytic in-process dressing (ELID) method has been applied at metal bonded diamond and CBN wheels. Super precision grinding using ductile mode at difficult-ta-cut materials could be performed.

  • PDF

Improvement in Mechanical Properties of Cryogenically Treated WC-5 wt% NbC Hard Materials Sintered by Pulsed Current Activated Sintering

  • Jeong Han Lee;Hyun Kuk Park;Jae Cheol Park
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.528-532
    • /
    • 2022
  • Recently, the necessity of designing and applying tool materials that perform machining of difficult-to-cut materials in a cryogenic treatment where demand is increasing. The objective of this study is to evaluate the performance of cryogenically treated WC-5 wt% NbC hard materials fabricated by a pulsed current activated sintering process. The densely consolidated specimens are cryogenically exposed to liquid nitrogen for 6, 12, and 24 h. All cryogenically treated samples exhibit compressive stress in the sintered body compared with the untreated sample. Furthermore, a change in the lattice constant leads to compressive stress in the specimens, which improves their mechanical performance. The cryogenically treated samples exhibit significant improvement in mechanical properties, with a 10.5 % increase in Vickers hardness and a 60 % decrease in the rupture strength compared with the untreated samples. However, deep cryogenic treatment of over 24 h deteriorates the mechanical properties indicating that excessive treatment causes tensile stress in the specimens. Therefore, the cryogenic treatment time should be controlled precisely to obtain mechanically enhanced hard materials.

An Analytical Study on the Preheating Effect of Workpiece with Cylindrical Shape for 3-Dimensional Laser-Assisted Milling (3 차원 레이저 보조 밀링을 위한 실린더형 시편의 예열효과에 관한 해석적 연구)

  • Woo, Wan-Sick;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.173-178
    • /
    • 2015
  • Laser-assisted machining (LAM) is an effective machining method for processing difficult-to-cut materials. Prediction and estimation of preheating effect of the LAM is difficult because of moving heat source. So it is necessary to study the preheating effect of the laser heat source irradiated on the curved surfaces of workpieces of various shape. In this paper, thermal analysis of the LAM for 3-dimentional workpiece with cylindrical shape was performed. The results of this analysis can be applied to obtain the optimal preheating method and path for LAM of 3-dimensional workpiece.

Should Cut-Off Values of the Risk of Malignancy Index be Changed for Evaluation of Adnexal Masses in Asian and Pacific Populations?

  • Yavuzcan, Ali;Caglar, Mete;Ozgu, Emre;Ustun, Yusuf;Dilbaz, Serdar;Ozdemir, Ismail;Yildiz, Elif;Gungor, Tayfun;Kumru, Selahattin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5455-5459
    • /
    • 2013
  • Background: The risk of malignancy index (RMI) for the evaluation of adnexal masses is a sensitive tool in certain populations. The best cut off value for RMI 1, 2 and 3 is 200. The cut off value of RMI-4 to differentiate benign from malignant lesions is 450. Our aim was to evaluate the efficiency of four different malignancy indexes (RMI1-4) in a homogeneous population. Materials and Methods: We evaluated a total of 153 non-pregnant women with adnexal masses who did not have a history of malignancy and who were above 18 years of age. Results: A cut-off value of 250 for RMI-1 provided 95.9% inter-observer agreement, yielding 95.9% specificity, 93.5% negative predictive value, 75.0% sensitivity and 82.8% positive predictive value. A cut-off value of 250 for RMI-1 showed high performance in preoperative diagnosis of invasive malignant lesions than cut-off value of 200 in our population. A cut-off value of 350 for RMI-2 provided 94.5% inter-observed agreement, yielding 94.2% specificity, 93.4% negative predictive value, 75.0% sensitivity and 77.4% positive predictive value. RMI-2 showed the higher performance when the cut-off value was set at 350 in our population. A cut-off value of 250 provided 95.2% inter-observer agreement, yielding 95.0% specificity, 93.2% negative predictive value, 75.0% sensitivity, and 88.0% positive predictive value. RMI-3 showed the highest performance to diagnose malignant adnexal masses when the cut-off value was set at 250. In our study, RMI-4 showed similar statistical performance when the cut-off value was set at 400 [(Kappa: 0.684/p=0.000), yielding 93.8% inter-observer agreement, 93.4% specificity, 93.4% negative predictive value, 75.0% sensitivity, and 75.0% negative predictive value]. Conclusions: We showed successful utilization of RMIs in preoperative differentiation of benign from malignant masses. Many studies conducted in Asian and Pacific countries have reported different cut-off values as was the case in our study. We think that it is difficult to determine universally accepted cut-off values for RMIs for common use around the globe.

Improvement of Magnetic Force and Experimental Verification for Magnetic Abrasive Polishing of Aluminum Alloy (알루미늄의 자기연마가공에서 영구자석을 이용한 자기력향상)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.23-29
    • /
    • 2008
  • Magnetic abrasive polishing is one of the nontraditional machining technologies newly developed. But it was very difficult to cut non-magnetic materials using MAP process because the process was fundamentally possible by help of a magnetic farce. In this study, we aimed to verify analytically formation of the magnetic field in a case of the nonmagnetic materials especially focused on an aluminum alloy. And also an improving strategy of the magnetic force for the non-magnetic materials was proposed and experimentally verified. Design of experimental method was adopt for assessment of parameters' effect on the MAP results of the aluminum alloy.