• Title/Summary/Keyword: Difficult to Machine Material

Search Result 139, Processing Time 0.022 seconds

A Study on machining characteristics of the Electropolishing of Aluminum alloy (알루미늄 합금의 전해연마 가공특성에 관한 연구)

  • 이은상;김창근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • Electropolishing is the electrolytic removal of metal in a highly ionic solution by means of an electrical potential and current. It is normally used to remove a very thin layer of material on the surface of a metal part or component. Electropolishing is able to enhance the material properties of a workpiece and to change its physical dimensions. Also, It is suitable for the polishing of both complex shapes and hardened materials, which are difficult to machine mechanically. therefore, the aim of the present study is to investigate the characteristic of Electropolishing A12024 in terms of current density, polishing time and electrode gap, etc.

Analysis of Cutting Parameters for $Si_3 N_4$-hBN Machinable Ceramics Using Tungsten Carbide Tool (초경공구를 사용한 $Si_3 N_4$-hBN 머시너블 세라믹 가공에서 절삭 파라미터 분석과 결정)

  • 장성민;조명우;조원승;박동삼
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.36-43
    • /
    • 2003
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as finding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on determining the optimal levels of process parameters for products with CNC machining center. For this purpose, the optimization of cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA and F-test. Cutting parameters, namely, cutting speed, feed and depth of cut are optimized with consideration of the surface roughness.

Development of CAM Automation Module(E-ICAM) for 5-axis Machining of Impeller (A Study on Configuration of Module) (임펠러의 5축 CAM 자동화 모듈(E-ICAM)의 개발 (모듈 구성에 관한 연구))

  • Jung, Hyoun-Chul;Hwang, Jong-Dae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.109-114
    • /
    • 2011
  • An impeller is difficult to machine because of severe collision due to the complex shape, overlapping and twisted shape that form impeller blades. So, most CAM software companies have developed CAM module for manufacturing impeller in addition to their CAM software. But it is not still easy for inexperienced users to machine impellers. The purpose of this paper is the development of automatic CAM module for manufacturing impeller(E-ICAM) which is based on visual basic language and it is used CATIA graphical environment in order to be easily machining impellers. Automatic CAM module for manufacturing of impellers generates tool path, and proposes recommended cutting condition according to the material of stock and tool. In addition, it has also included a post processor for 5-axis control machining. Therefore the user can easily machine impellers using this automation module.

ELID Grinding of Hard-To-Machine Materials on Surface Grinder (평면연삭반에서 난삭재의 ELID연삭)

  • Kim, Gyung-Nyun;Jun qian, Jun-Qian;Ohmori hitoshi, Ohmori-Hitoshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • The grinding for hard-to-machine materials, such as ceramics, super alloys etc., has proven to be a very difficult and consuming process utilizing ordinary methods. In order to conduct high efficiency machining of such materials, grinding processes using metallic bond diamond wheels and applying electrolytic in-process dressing(ELID) have been attempted on a surface grinding machine. In this study, the effects of grinding parameters, and grit sizes have been evaluated in view of surface roughness, grinding force as well as step difference in simultaneous grinding of different materials. The study and experimental results are presented in this paper.

  • PDF

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

Cutting force analysis in ball-end milling processes of STD11 (STD11의 볼엔드밀링 공정에서의 절삭력 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.52-57
    • /
    • 2000
  • STD11 is one of difficult-to-cut materials and its cutting characteristic data is not built enough. A bad cutting condition of it leads to low productivity of die and mould, so it is necessary to evaluate the machining characteristics of STD11. In this paper, the relations of the geometry of ball-end mill and mechanics of machining with it are studied. The helix angle of ball-end mill varies according to a location of elemental cutting edge in the cutting process are difficult to calculate accurately. To calculate instantaneous cutting forces, it is supposed that the tangential, radial and axial cutting force coefficients are functions of elemental cutting edge location. Elemental cutting forces in the x,y and z direction are calculated by coordinate transformation. The total cutting forces are calculated by integrating the elemental cutting forces of engaged cutting edge elements. This model is verified by slot and side cutting experiments of STD11 workpiece which was heat-treated to HRC45.

  • PDF

Predicting and Interpreting Quality of CMP Process for Semiconductor Wafers Using Machine Learning (머신러닝을 이용한 반도체 웨이퍼 평탄화 공정품질 예측 및 해석 모형 개발)

  • Ahn, Jeong-Eon;Jung, Jae-Yoon
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.61-71
    • /
    • 2019
  • Chemical Mechanical Planarization (CMP) process that planarizes semiconductor wafer's surface by polishing is difficult to manage reliably since it is under various chemicals and physical machinery. In CMP process, Material Removal Rate (MRR) is often used for a quality indicator, and it is important to predict MRR in managing CMP process stably. In this study, we introduce prediction models using machine learning techniques of analyzing time-series sensor data collected in CMP process, and the classification models that are used to interpret process quality conditions. In addition, we find meaningful variables affecting process quality and explain process variables' conditions to keep process quality high by analyzing classification result.

  • PDF

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Quantitative Evaluation of Impact Defects inside of Composite Material Plate by ESPI (ESPI를 이용한 충격손상을 받은 복합재료 내부결함의 정량평가)

  • 김경석;양광영;장호섭;지창준;윤홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.254-258
    • /
    • 2003
  • Electronic Speckle Pattern for quantitative evaluation of a impact defect inside of composite material plate are described. The impact on composite material makes inside delamination which is difficult to detect visual inspection and ultrasonic testing due to non-homeogenous structure. This paper proposes the quantitative evaluation technique of defects under real impact. Artificial defects are designed inside of composite plate for development of inspection technique and real defects under impact are inspected and compared with results of visual inspection.

  • PDF

A study on the machinability of SUS304

  • Lim, K.Y.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-41
    • /
    • 1993
  • SUS304 is wellknown as difficult-to-machine materials. It is easy to appear workhardened, and workhardening is one of the causes of groove wear on the tool. In this paper, the author would like to compare the width of flank wear with that of groove wear, and to find whether the groove wear can be used as a criterion of a tool life. The design of the twelve tests provides three levels for each variable (speed: 200m/min, 118m/min, 70m/min; feed: 0.3mm/rev, 0.17mm/rev, 0.1mm/rev; depth of cut: 0.4mm, 0.28mm, 0.2mm). The study of tool-life testing by statistical technique follows usual most scientific sequence. So the tool-life predicting equation is calculated by the method of least squares. The overall adequacy of the model can be verified by the analysis of variance. The results obtained are as follows : 1) When SUS304 is cut in 200(m/min), the width of flank wear is much larger than that of groove wear. 2) In cutting speed 118m/min, flank wear is a little larger than groove wear and in the cutting speed 70m/min, the latter is a little larger so that it is reasonable to determine the tool life according the crierion by groove wear in the low cutting speed (less than 70m/min). 3) Owing to the burr the depth of engagement along the cutting edge is extended toward the shank.

  • PDF