• Title/Summary/Keyword: Differential titration

Search Result 13, Processing Time 0.01 seconds

Differential Titrimetric Determination of Bismuth$^1$

  • Choi, Q.-Won;Lim, H. S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.217-219
    • /
    • 1983
  • A precise EDTA titrimetric method involving a weight titration of major portion with solid reagent followed by titration of the remainder with a very dilute standard solution has been developed for the determination of bismuth. When the end point is determined by means of amperometry with a rotating mercury electrode, the error in bismuth analysis is less than 0.01 % even when $Pb^{2+}$, $Zn^{2+}$, or $Cd^{2+}$ is present. However, copper interferes appreciably and masking with thiourea gives too low results.

Determination of Stability Constants Using Electrochemical Methods for the Complex Formation of Platinum and Palladium with Polyelectrolytes

  • Park, Joon Seo;Chung, Koo Soon
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.691-698
    • /
    • 1995
  • The complexation of platinum and palladium with synthetic polyelectrolytes was studied. The successive and overall stability constants of Pd(II) with PEI and 2PVP were obtained by potentiometric titration. Because of the slow equilibrium time, the potentiometric titrations were performed using the home-made automatic titrator in order to analyze the complexations according to the modified Bjerrum method. The complex formation constant of Pt(IV) with 2PVP, measured by differential pulse polarography, was calculated from the peak currents that were obtained in non-complexing media and in solution containing 2PVP.

  • PDF

Effects of a Phosphomimetic Mutant of RAP80 on Linear Polyubiquitin Binding Probed by Calorimetric Analysis

  • Thach, Thanh Trung;Jee, Jun-Goo;Lee, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1285-1289
    • /
    • 2012
  • RAP80 plays a key role in DNA damage responses by recognizing K63-linked polyubiquitin moieties through its two ubiquitin-interacting motif (UIM) domains. The linker between the two UIMs possesses a phosphorylation site, but the relationship between phosphorylation and polyubiquitin recognition remains elusive. We investigated the interaction between a phosphorylation-mimic RAP80 mutant S101E and linear polyubiquitins, structurally equivalent to the K63-linked ones, using isothermal titration calorimetry (ITC). ITC analysis revealed differential binding affinities for linear tetraubiquitin by otherwise equivalent UIMs in S101E. Mutational analysis supported such differential polyubiquitin recognition by S101E. Our results suggest a potential crosstalk between polyubiquitin recognition and phosphorylation in RAP80.

Transition-Metal-Mediated Cytotoxicity of Quinolones to L1210 Cells

  • Ko, Tong-Sung;Kwon, Tae-Ik;Kim, Moon-Jip;Park Il-Hyeon;Ryu Hyeong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 1994
  • Transition metals tested, $Cu^{2+}$, and $Ni^{2+}$, were found effective in the induction of the cytotoxicity of the quinolones tested, nalidixic acid, oxolinic acid, and pipemidic acid, against L1210 leukemia cells in vitro, whereas the alkaline earth metal, $Mg^{2+}$, was not. The differential effect of the metals on the quinolone cytotoxicity can be explained by their different mode of interaction with the quinolones. Our present difference spectroscopic titration data suggest that the transition metals can form DNA-intercalating agents, with the quinolones, which can cause the cytotoxicity.

$^1H$ NMR Estimation of Multi-Redox potentials of Cytochrome $c_3$ from Desulfovibrio vulgaris Hildenborough

  • 박장수;강신원;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.331-336
    • /
    • 1995
  • The macroscopic and microscopic redox potentials of tetrahemoprotein, cytochrome c3 from Desulfovibrio vulgaris(Hildenborough) (DvH) were estimated from 1H NMR and differential pulse polarography(DPP). Five sets of NMR resonances were confirmed by a redox titration. They represent cytochrome c3 molecules in five macroscopic redox states. The electron transfer in cytochrome c3 involves four consecutive one-electron steps. The saturation transfer method was used to determine the chemical shifts of eight heme methyl resonances in five different oxidation states. Thirty two microscopic redox potentials were estimated. The results showed the presence of a strong positive interaction between a pair of particular hemes. Comparing the results with those of Desulfovibrio vulgaris Miyazaki F (DvMF), it was observed that the two proteins resemble each other in overall redox pattern, but there is small difference in the relative redox potentials of four hemes.

Nanostructured Hydroxyapatite for Biomedical Applications: From Powder to Bioceramic

  • Eslami, Hossein;Tahriri, Mohammadreza;Moztarzadeh, Fathollah;Bader, Rizwan;Tayebi, Lobat
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.597-607
    • /
    • 2018
  • In this study, a wet chemical method was used to synthesize nanostructured hydroxyapatite for biomedical applications. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials with a sodium hydroxide solution as an agent for pH adjustment. Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, differential thermal analysis, thermal gravimetric analysis, atomic absorption spectroscopy, and ethylenediaminetetraacetic acid (EDTA) titration analysis were used to characterize the synthesized powders. Having been uniaxially pressed, the powders formed a disk-like shape. The sinterability and electrical properties of the samples were examined, and the three-point bending test allowed for the measurement of their mechanical properties. Sedimentation analysis was used to analyze the slurry ability of hydroxyapatite. As in-vitro biological properties of the samples, biocompatibility and cytotoxicity were assessed using osteoblast-like cells and the L929 cell line, respectively. Solubility was assessed by employing a simulated body fluid.

Novel Synthesis of Sulfated Chitosan Derivatives and its Anti-HIV-1 Activity (황산화 키토산 유도체의 합성과 항에이즈활성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.21-34
    • /
    • 2006
  • To investigate anti-HIV-1 activity of water soluble chitosans, sulfated chitosan derivatives were prepared in mild condition. Various sulfated chitosan derivatives (N-3,6-O-S-chitosan, N-desulfated 3,6-O-S-chitosan, 3,6-O-S-chitin, and 3,6-O-sulfated-N-(o-carboxybenzoyl) chitosan) were synthesized with sulfurtrioxidepyridene complex in pyridine solvent. Characterization of the sulfated chitosan derivatives was carried out by $^{13}C$ NMR and IR spectroscopies. To observe ionic reaction properties, pKas of the sulfated chitosan derivatives and chitosan of low molecular weight were estimated by potentiometric titration. The sulfated chitosan derivatives had high water solubility, pKas (pKa : 7.7) of N-3,6-O-S-chitosan and N-desulfated 3,6-O-S-chitosan were increased than pKa of water insoluble chitosan (pKa : 6.2), These results suggest the participation of electrostatic interaction of amino and sulfate groups on the sulfated chitosans. Anti-HIV-1 drugs, such as AZT, ddC, and ddI for anti-HIV activity had higher selective index compared with SCB-chitosan but N-3,6-O-S-chitosan has shown higher selective index compared with ddC and ddI as HIV drugs.. These results suggest that sulfated chitosan derivatives were expected as an anti-HIV drug with differential driving force mechanism against some nucleoside analogs drug in the future.

Pyrolysis Reaction for the Treatment of Hazardous Halogenated Hydrocarbon Waste (유해 할로겐화 탄화수소 폐기물 처리를 위한 열분해 반응)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.399-407
    • /
    • 1997
  • The pyrolysis reactions of atomic hydrogen with chloroform were studied In a 4 cm 1.6. tubular flow reactor with low flow velocity 1518 cm/sec and a 2.6 cm 1.4. tubular flow reactor with high flow velocity (1227 cm/sec). The hydrogen atom concentration was measured by chemiluminescence titration with nitrogen dioxide, and the chloroform concentrations were determined using a gas chromatography. The chloroform conversion efficiency depended on both the chloroform flow rate and linear flow velocity, but 416 not depend on the flow rate of hydrogen atom. A computer model was employed to estimate a rate constant for the initial reaction of atomic hydrogen with chloroform. The model consisted of a scheme for chloroform-hydrogen atom reaction, Runge-Kutta 4th-order method for Integration of first-order differential equations describing the time dependence of the concentrations of various chemical species, and Rosenbrock method for optimization to match model and experimental results. The scheme for chloroform-hydrogen atom reaction Included 22 elementary reactions. The rate constant estimated using the data obtained from the 2.6 cm 1.4. reactor was to be 8.1 $\times$ $10^{-14}$ $cm^3$/molecule-sec and 3.8 $\times$ $10^{-15}$ cms/molecule-sec, and the deviations of computer model from experimental results were 9% and 12% , for the each reaction time of 0.028 sec and 0.072 sec, respectively.

  • PDF

Thermal Decomposition of Ammonium Salts of Transition Metal Oxyacids. V. Study on the Thermal Decomposition of Ammonium Metavanadate (전위금속의 산소산염의 열분해에 관한 연구 (제5보) Ammonium Metavanadate의 열분해에 따르는 $V_2O_5$의 생성)

  • Il-Hyun Park
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-165
    • /
    • 1972
  • Thermal decomposition of ammonium metavanadate has been investigated by using the quartz spring balance and differential thermal analysis. It showed that the decomposition of ammonium metavanadate is proceeded at two stages which correspond to $180^{\circ}C-220^{\circ}C$ and $310^{\circ}C-330^{\circ}C$ decomposition temperatures, respectively. Evolved ammonia gas in thermal decomposition has been analyzed quantitatively by titration. And the constituents of gases evolved have been evaluated by gas chromatography and omegatron spectrometer. From these results, it was concluded that the gases evolved in the first step decomposition were $NH_3$ and $H_2O$ with 2:1 ratio and the second step decomposition corresponded to the formation of $NH_3$, $H_2O$ and $N_2O$ which was produced in oxidation of $NH_3$ by $V_2O_5$. The decomposition products were identified by means of X-ray diffraction method. The decomposition product in air was V_2O_5 and the product in vacuum $V_3O_7.$ The kinetics of the thermal decomposition was studied, giving the values of the activation energy of 41.4 kcal/mole and 64.4 (kcal/mole) respectively.

  • PDF