• Title/Summary/Keyword: Differential expression analysis

Search Result 390, Processing Time 0.029 seconds

Differential Proteome Analysis of Breast and Thigh Muscles between Korean Native Chickens and Commercial Broilers

  • Liu, Xian De;Jayasena, Dinesh D.;Jung, Yeon-Kuk;Jung, Samooel;Kang, Bo-Seok;Heo, Kang-Nyeong;Lee, Jun-Heon;Jo, Cheo-Run
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.895-902
    • /
    • 2012
  • The Korean native chickens (Woorimotdak$^{TM}$, KNC) and commercial broilers (Ross, CB) show obvious differences in meat flavor after cooking. To understand the contribution of protein and peptide for meat flavor, 2-dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was performed. A total of 16 protein spots were differentially expressed in the breast and thigh meat between the two breeds. A total of seven protein spots were represented by different levels between KNC and CB for breast meat. Among them three protein spots (TU39149, TU40162 and TU39598) showed increases in their expressions in KNC while other four protein spots (BU40125, BU40119, BU40029 and BU39904) showed increases in CB. All nine protein spots that were represented by different levels between KNC and CB for thigh meat showed increases in their expression in KNC. Phosphoglucomutase 1 (PGM 1), myosin heavy chain (MyHC), heat shock protein B1 (HSP27), cytochrome c reductase (Enzyme Q), Glyoxylase 1, DNA methyltransferase 3B (DNA MTase 3) were identified as the main protein spots by MALDI-TOF mass spectrometry. These results can provide valuable basic information for understanding the molecular mechanism responsible for breed specific differences in meat quality, especially the meat flavour.

Acute Pulmonary Responses in Vivo to Silica Complexed with $H^+$, $Zn^{2+}$, or $Fe^{3+}$

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • This investigation is to determine whether the surface complexation of iron influence acute pulmonary responses induced by silica. For this study, three varieties of cation complexed silica were used: $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ since the first two are not active in the transport of electrons and generate little free radicals relative to the dust with the surface iron. Rats (270 to 280 g) were intratracheally (IT) instilled with saline, $silica-H^+,\;-Zn^{2+},\;or\;-Fe^{3+}$(5 mg in 0.5 ml saline). After 4 h, cell number, type, and differentiation were analysed in the bronchoalveolar lavage cells, and the levels of lactate dehydrogenase (LDH) and total protein were determined in the lavage fluid. In addition, bronchoalveolar lavage cells were cultured, and nitric oxide production was measured using nitrate assay. Inducible nitric oxide synthase (iNOS) mRNA in the bronchoalveolar lavage cells was also determined by northern blot analysis. Differential counts of the lavage cells showed that red blood cells were increased by 9-, 8-, and 13-fold and total leukocytes (lymphocytes plus polymorphonuclear neutrophils) by 48-, 36-, and 33-fold, following IT $silica-H^+,\;-Zn^{2+},\;and\;-Fe^{3+},$ respectively compared with the saline group. Meanwhile, there were no significant differences in red blood cells and total leukocytes among any of the cation complexed silica groups. The levels of LDH and total protein in the lavage fluid were significantly increased by 3- to 4-fold. However, compared among these silica groups, $Fe^{3+}$? complexation did not significantly change the LDH activity and total protein. NO production in cultured bronchoalveolar lavage cells was elevated by 2-fold, following IT any of the silica treatments compared with the saline group. Furthermore, the steady-state levels of iNOS mRNA in the lavage cells were greatly increased. There were any differences in iNOS mRNA expression among the silica-treated groups as with NO production. These findings suggest that surface complexed iron may not influence the acute pulmonary responses resulted from 4h exposure to silica.

  • PDF

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis

  • Kim, Taewook;Park, June Hyun;Lee, Sang-gil;Kim, Soyoung;Kim, Jihyun;Lee, Jungho;Shin, Chanseok
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.587-597
    • /
    • 2017
  • MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissuespecific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior

  • Sayson, Leandro Val;Kim, Mikyung;Jeon, Se Jin;Custodio, Raly James Perez;Lee, Hyun Jun;Ortiz, Darlene Mae;Cheong, Jae Hoon;Kim, Hee Jin
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.238-245
    • /
    • 2022
  • Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.

Antibacterial Effect of Various Fermentation Products and Identification of Differentially Expressed Genes of E.coli (다양한 발효액의 항균효과와 대장균의 유전적 변화에 미치는 영향)

  • Heo, Jihye
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are typical opportunistic pathogens. Moreover, these bacteria are known to possess multidrug-resistant (MDR) properties. This study investigates the antimicrobial activity of six fermented products, which have varying efficacies against P. aeruginosa, E. coli, and S. aureus. To identify novel candidate genes, differential expression analysis was performed using an annealing control primer. In the disk diffusion method, Fig vinegar (FV) and Diospyros kaki Thunb vinegar (DTV) showed the greatest increase in inhibition compared to other fermented products, whereas fermented Korean traditional nature herb (FKTNH) had no antibacterial effect. This study identified down-regulation of Escherichia coli O157:H7 ompW gene for outer membrane protein W, whereas gene for synthetic construct Lao1 gene for L-amino acid oxidase were up-regulated in E. coli treated with 5% FV. Consuming fermented vinegar helps prevent bacterial infections. Especially, FV and DTV are potentially useful alternative natural products for multidrug resistance. Furthermore, both are expected to be used as effective natural antimicrobial agents, such as disinfectants.

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.385-394
    • /
    • 2022
  • Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

Stage specific transcriptome analysis of liver tissue from a crossbred Korean Native Pig (KNP × Yorkshire)

  • Kumar, Himansu;Srikanth, Krishnamoorthy;Park, Woncheol;Lee, Kyung-Tai;Choi, Bong-Hwan;Kim, Jun-Mo;Lim, Dajeong;Park, Jong-Eun
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2018
  • Korean Native Pig (KNP) has a uniform black coat color, excellent meat quality, white colored fat, solid fat structure and good marbling. However, its growth performance is low, while the western origin Yorkshire pig has high growth performance. To take advantage of the unique performance of the two pig breeds, we raised crossbreeds (KNP ${\times}$ Yorkshire to make use of the heterotic effect. We then analyzed the liver transcriptome as it plays an important role in fat metabolism. We sampled at two stages: 10 weeks and at 26 weeks. The stages were chosen to correspond to the change in feeding system. A total of 16 pigs (8 from each stage) were sampled and RNA sequencing was performed. The reads were mapped to the reference genome and differential expression analysis was performed with edgeR package. A total of 324 genes were found to be significantly differentially expressed (${\left|log2FC\right|}$ > 1 & q < 0.01), out of which 180 genes were up-regulated and 144 genes were down-regulated. Principal Component Analysis (PCA) showed that the samples clustered according to stages. Functional annotation of significant DEGs (differentially expressed genes) showed that GO terms such as DNA replication, cell division, protein phosphorylation, regulation of signal transduction by p53 class mediator, ribosome, focal adhesion, DNA helicase activity, protein kinase activity etc. were enriched. KEGG pathway analysis showed that the DEGs functioned in cell cycle, Ras signaling pathway, p53 signaling pathway, MAPK signaling pathway etc. Twenty-nine transcripts were also part of the DEGs, these were predominantly Cys2His2-like fold group (C2H2) family of zinc fingers. A protein-protein interaction (PPI) network analysis showed that there were three highly interconnected clusters, suggesting an enrichment of genes with similar biological function. This study presents the first report of liver tissue specific gene regulation in a cross-bred Korean pig.