• Title/Summary/Keyword: Differential cloning

Search Result 60, Processing Time 0.02 seconds

Synthesis and Secretion of Mutant Mannose-Binding Lectin (돌연변이 Mannose-binding Lectin 합성과 세포 병리적 연구)

  • Jang, Ho-Jung;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Innate immunity is the ability to differentiate infectious agents from self. The innate immune system is comprised of a complicated network of recognition and effector molecules that act together to protect the host in the early stage of an infectious challenge. Mannose-binding lectin (MBL or mannose-binding protein, MBP) belongs to the family of $Ca^{2+}$-dependent lectins (C-type lectin with a collagen-like domain), which are considered an important component of innate immunity. While it is associated with increased risk and severity of infections and autoimmunity, the most frequent immuno-deficiency syndrome was reported to be low MBL level in blood. Deficiency of human MBL is caused by mutations in the coding region of the MBL gene. Rat homologue gene of human MBL gene was used to study functions of wild type and mutant MBL proteins. Although extensive studies have yielded the structural information of MBL, the functions of MBL, especially mutant MBL, still require investigation. We previously reported the cloning of rat wild-type MBL gene and the production of a truncated form of MBL protein and its antibody. Here, we present the cloning of mutant MBL cDNA in collagen-like domain (R40C, G42D, and G45E) using site-directed mutagenesis and differential behaviors of wild type and mutant MBL in cells. The major difference between wild type and mutant MBL was that while wild type MBL was secreted, mutant MBL was inhibited for secretion, retained in endoplasmic reticulum, and still functioned as a lectin.

Cloning, Expression and Hormonal Regulation of Steroidogenic Acute Regulatory Protein Gene in Buffalo Ovary

  • Malhotra, Nupur;Singh, Dheer;Sharma, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.184-193
    • /
    • 2007
  • In mammalian ovary, steroidogenic acute regulatory (StAR) protein mediates the true rate-limiting step of transport of cholesterol from outer to inner mitochondrial membrane. Appropriate expression of StAR gene represents an indispensable component of steroidogenesis and its regulation has been found to be species specific. However, limited information is available regarding StAR gene expression during estrous cycle in buffalo ovary. In the present study, expression, localization and hormonal regulation of StAR mRNA were analyzed by semi-quantitative RT-PCR in buffalo ovary and partial cDNA was cloned. Total RNA was isolated from whole follicles of different sizes, granulosa cells from different size follicles and postovulatory structures like corpus luteum and Corpus albicans. Semi-quantitative RT-PCR analyses showed StAR mRNA expression in the postovulatory structure, corpus luteum. No StAR mRNA was detected in total RNA isolated from whole follicles of different size including the preovulatory follicle (>9 mm in diameter). However, granulosa cells isolated from preovulatory follicles showed the moderate expression of StAR mRNA. To assess the hormonal regulation of StAR mRNA, primary culture of buffalo granulosa cells were treated with FSH (100 ng/ml) alone or along with IGF-I (100 ng/ml) for 12 to 18 h. The abundance of StAR mRNA increased in cells treated with FSH alone or FSH with IGF-I. However, effect of FSH with IGF-I on mRNA expression was found highly significant (p<0.01). In conclusion, differential expression of StAR messages was observed during estrous cycle in buffalo ovary. Also, there was a synergistic action of IGF-I on FSH stimulation of StAR gene.

Molecular Cloning of a Gene Encoding a Putative Antibacterial Peptide from Bombyx mori (누에에서 새로운 항세균성 펩타이드 유사 유전자의 분리와 염기서열 결정)

  • 김상현;제연호;윤은영;강석우;김근영;강석권
    • Korean journal of applied entomology
    • /
    • v.35 no.4
    • /
    • pp.321-325
    • /
    • 1996
  • To isolate a novel gene for antibacterial peptide, an inducible clone(BmInc8) was selected by differential screening strategy from Bombyx mori cDNA library prepared from lavae injected with Escherichia coli. This clone contained a cDNA insert of 564 nucleotides and encoded 59 amino acids with an apparent molecular mass of 6.3 kDa. The cDNA sequence of BmInc8 had 61.2% identity compared to that of the bactericidin from Manduca sexta and also the deduced amino acids sequences from this insert had 65% identity compared to that of the cecropin D peptide Hyalophora cecropia. The transient expression assay of this insert using prokaryotic expression vector system revealed that the expressed peptide displayed the antibacterial activity. The cDNA sequence was deposited in GenBank under the accession number U30289.

  • PDF

Molecular Genetic Analysis of Leaf Senescence in Arabidopsis

  • Woo, Hye-Ryun;Lee, Ung;Cho, Sung-Whan;Lim, Pyung-Ok;Nam, Hong-Gil
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.259-268
    • /
    • 2000
  • Senescence is a sequence of biochemical and physiological events that lead to death of a cell, organ, or whole organism. Senescence is now clearly regarded as a genetically determined and evolutionarilly acquired developmental process comprising the final stage of development. However, in spite of the biological and practical importance, genetic mechanism of senescence has been very limited. Through forward and reverse genetic approaches, we are trying to reveal the molecular and genetic mechanism of senescence in plants, employing leaf organs of Arabidopsis as a model system. Using forward genetic approach, we have initially isolated several delayed senescence mutants either from T-DNA insertional lines or chemical-mutagenized lines. In the case of ore 4 and ore 9 mutants, the mutated genes were identified. The recent progress on characterization of mutants and identification of the mutated genes will be reported. We are also screening mutations from other various sources of mutant pools, such as activation tagging lines and promoter trap lines. Two dominant senescence-delayed mutants were isolated from the activation tagging pool. Cloning of the genes responsible for this phenotype is in progress. For reverse genetic approach, the genes that induced during leaf senescence were first isolated by differential screening method. We are currently using PCR-based suppression subtractive hybridization, designed to enrich a cDNA library for rare differentially expressed transcripts. Using this method, we have identified over 35 new sequences that are upregulated at leaf senescence stage. We are investigating the function of these novel genes by systemically generating antisense lines.

  • PDF

Molecular Cloning and Characterization of Outer Envelope Membrane Protein from Salicornia herbacea (퉁퉁마디로부터 색소체 외막 단백질 유전자의 분리 및 발현분석)

  • Ermawati Netty;Cha, Joon-Yung;Liang, Yingshi;Jung, Min-Hee;Shin, Dongjin;Lee, Byung-Hyun;Lee, Kon-Ho;Son, Daeyoung
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.273-278
    • /
    • 2004
  • Complementary DNA encoding chloroplast outer envelope membrane protein (OEP) from the halophyte Salicornia herbacea has been cloned and sequenced. The full length cDNA is 596 bp and encodes a polypeptide of 91 amino acid residues with a molecular mass of 8.9 kDa. The expression level of ShOEP increased by salt, drought and ABA treatments. ShOEP expression was largely induced in roots and shoots by high salts. The biological function of ShOEP was examined by yeast complementation. ShOEP can suppress Na$^{+}$ sensitivity of yeast mutant (cnb$\Delta$) in the presence of salt. These results suggest that ShOEP is a salt inducible gene and may have functions in the regulation of plant salt stress.ant salt stress.

Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress

  • Kim, Yun-Hee;Yang, Kyoung-Sil;Kim, Cha-Young;Ryu, Sun-Hwa;Song, Wan-Keun;Kwon, Suk-Yoon;Lee, Haeng-Soon;Bang, Jae-Wook;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2008
  • Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RT-PCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.

Identification of Glycine max Genes Expressed in Response to Soybean mosaic virus Infection

  • Jeong, Rae-Dong;Lim, Won-Seok;Kwon, Sang-Wook;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Identification of host genes involved in disease progresses and/or defense responses is one of the most critical steps leading to the elucidation of disease resistance mechanisms in plants. Soybean mosaic virus (SMV) is one of the most prevalent pathogen of soybean (Glycine max). Although the soybeans are placed one of many important crops, relatively little is known about defense mechanism. In order to obtain host genes involved in SMV disease progress and host defense especially for virus resistance, two different cloning strategies (DD RT-PCR and Subtractive hybridization) were employed to identify pathogenesis- and defenserelated genes (PRs and DRs) from susceptible (Geumjeong 1) and resistant (Geumjeong 2) cultivars against SMV strain G7H. Using these approaches, we obtained 570 genes that expressed differentially during SMV infection processes. Based upon sequence analyses, differentially expressed host genes were classified into five groups, i.e. metabolism, genetic information processing, environmental information processing, cellular processes and unclassified group. A total of 11 differentially expressed genes including protein kinase, transcription factor, other potential signaling components and resistant-like gene involved in host defense response were selected to further characterize and determine expression profiles of each selected gene. Functional characterization of these genes will likely facilitate the elucidation of defense signal transduction and biological function in SMV-infected soybean plants.

Cloning and Expression of Lactate Dehydrogenase H Chain Gene in Adipose Tissues of Korean Cattle

  • Kim, H.H.;Seol, M.B.;Jeon, D.H.;Sun, S.S.;Kim, K.H.;Choi, Y.J.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1670-1674
    • /
    • 2001
  • To understand molecular mechanisms that regulate deposition and release of intramuscular fat, a fasting-induced clone was identified by differential screening from cDNA library of adipose tissues of Korean cattle. The clone had a total length of 1,319 nucleotides coding for 334 amino acids. It was identified as one encoding L-lactate dehydrogenase H chain (LDH-B). Comparison of the deduced amino acid sequences of bovine LDH-B with those of pig, human, rat, and mouse showed 98%, 98%, 97%, and 96% identity, respectively. Food deprivation for 48 h increased mRNA levels of LDH-B gene in adipose tissues of Korean cattle compared to fed- and 6 h refed- tissues. The expression of obese mRNA was examined for individual adipose tissue from several fat depots. Fasting induced expression of LDH-B gene in subcutaneous adipose tissues, but it did not affect expression levels in abdominal, perirenal and intramuscular tissues. Results demonstrate that induction of LDH-B gene during fasting may represent a metabolic shift from anaerobic state to aerobic predominance in fasted adipose tissues and that its responses to fasting are different among several adipose tissues.

Differential Expression of Four $Ca_v$3.1 Splice Variants in the Repeat III-IV Loop

  • Lee, Sang-Soo;Park, You-Mi;Kang, Ho-Won;Bang, Hyo-Weon;Jeong, Seong-Woo;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.137-141
    • /
    • 2008
  • Molecular cloning revealed the three isoforms($Ca_v3.1,\;Ca_v3.2,\;and\;Ca_v3.3$) of the T-type calcium channel subfamily. Expression studies exhibited their distinctive electrophysiological and pharmacological properties, accounting for diverse properties of T-type calcium channel currents previously characterized from isolated cells. However, electrophysiological properties of ion channels have shown to be more diversified by their splice variants. We here searched splice variants of rat $Ca_v3.1$ T-type channel by reverse-transcription-polymerase chain reaction(RT-PCR) to further explore diversity of $Ca_v3.1$. Interestingly, analyses of cloned RT-PCR products displayed that there were at least four splicing variants of rat $Ca_v3.1$ in the loop connecting repeats III and IV. Southern blot analyses indicated that the predominantly detected variant in brain was $Ca_v3.1a$(492 bp), which were rarely detected in most of peripheral tissues. Other two variants($Ca_v3.1c$, 546 bp; $Ca_v3.1d$, 525 bp) were detected in most of the tissues examined. The smallest isoform($Ca_v3.1b$, 471 bp) was rarely detected all the tissues. Electrophysiological characterization of the splicing variants indicated that the splice variants differ in inactivation kinetics and the voltage dependence of activation and inactivation as well.

Identification of a Mature form and Characterization of Thermostability of a Serine-type Protease from Aquifex pyrophilus

  • Kim, Yun-Kyeong;Choi, In-Geol;Nam, Won-Woo;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.493-498
    • /
    • 2000
  • Aquifex pyrophilus, a hyperthermophilic bacterium, has a serine-type protease that is located at the cell wall fraction with a mature size of 43 kDa. Molecular cloning of the protease gene revealed that it has an ORF of 619 amino acids with homologous catalytic site of serine-type proteases [Choi, I.-G., Bang, W.-K., Kim, S.-H., Yu, G. Y., J. Biol. Chem. (1999), Vol. 274, pp. 881-888]. Constructs containing different regions of the protease gene, including a alanine-substituted mutant at the active site serine, were constructed, and the factors affecting the expression level of the cloned protease gene in E. coli were examined. The presence of the C-terminus hydrophobic region of the protease hindered over-expression in E. coli. Also, the proteolytic activity of the expressed protein appeared to toxic to E. coli. An inactive form that deleted both of the N-terminal signal sequence and the C-terminal polar residues was over-expressed in a soluble form, purified to homogeneity, and its thermostability examined. The purified protein showed three disulfide bonds and three free sulfhydryl group. The thermal denaturation temperature of the protein was measured around $90^{\circ}C$ using a differential scanning calorimeter and circular dichroism spectrometry. The disulfide bonds were hardly reduced in the presence of reducing agents, suggesting that these disulfide bonds were located inside of the protein surface.

  • PDF