• Title/Summary/Keyword: Differential Temperature Fire Detector

Search Result 5, Processing Time 0.021 seconds

Development of Compensation-Type Fire Detector Using Metal-Insulator-Transition Critical-Temperature Sensor (금속-절연체 전이 임계온도센서를 이용한 보상식 화재 감지기 개발)

  • Jung, Sun-Kyu;Kim, Hyun-Tak
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • A Compensation-type fire detector (CFD) is operated with two functions of a differential-temperature detector and as a fixed-temperature detector. The differential-temperature detector observes a rate of temperature increase, and the fixed-temperature detector measures a given fixed temperature. The differential-temperature detector does not observe the outbreak of fire in slowly increasing temperature conditions, whereas the fixed-temperature detector is not able to observe the outbreak of fire in conditions under predetermined temperature level. We developed a CFD to compensate for weaknesses of both detectors. To compensate for the disadvantages, a sensor of the sensor metal-insulator-transition critical-temperature sensor was used. Temperature coefficient of resistance is the sensitivity for sensor. At $55^{\circ}C$, temperature coefficient of resistance of metal-insulator-transition critical-temperature sensor was 14.15%. Temperature coefficient of resistance of thermistor was about 0.5%. This CFD was operated as two ways that fixed-temperature detector and differential-temperature detector in one sensor.

Differential temperature fire detector analysis of comparative study based on sensor installation (차동식 열감지기 설치기준 비교분석에 관한 연구)

  • Hwang, Dong-Hwan;Yang, Kwang Mo;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.379-389
    • /
    • 2014
  • Fire detectors are designed to minimize loss of life from a fire alarm system as an alarm to help evacuate more quickly until the completion of the evacuation alarm should be continued. the purpose of such alarms in order to achieve the characteristic fire heat release rate reaches a certain level, or when a certain time has elapsed, when the heat detector is to be alarms to answer. Requires a quick response, it is desirable to install the sensor as much as possible, but taking into account the cost of installation problems by engineering approach to minimize the quantity and rapidity of detection capability should be increased. In order to increase the rapidity of fire detectors in a room according to the height of the sensing period is to be maintained the optimum distance of the fire detector detects characteristics should be considered. Differential spot-type heat detectors installed domestic basis, depending on the type of sensor that can detect one sensor area is limited and less than 4m ceiling height regulations and simply double the number in excess of 4m and intended to be installed.

Analysis of Temperature Rise and Operation Time of Differential Spot Type Detector in Case of Mattress Fire in Multi-family House (다가구 주택의 매트리스 화재 시 차동식 스포트형 감지기의 온도상승 및 동작시간 분석)

  • Kim, Seo-Young;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.97-102
    • /
    • 2021
  • This study developed a scenario to understand the reaction rate and operational time according to RTI value of rate of rise detector in each type in case of fire mattress. In the results of analyzing the reaction rate and operational time of detector in each scenario, in case when installing a single detector, the elevated temperature per minute was raised to 8℃/min ~ 9℃/min. In case when installing two detectors, it was raised to 9℃/min ~ 10℃/min. In case when installing three detectors, it was raised to 10℃/min. The horizontal distance between detector and mattress was 1.8m~2.5m. Whenever the number of detectors was increased, the horizontal distance was decreased. The operational time of detector was within maximum 540 seconds and minimum 420 seconds. As the research tasks in the future, there should be the researches on the effects of reaction rate of detector on the evacuation in case of fire through the result value of RSET by setting up the latency until the detector operates, and the researches on the safety by understanding if the operational time of detector is suitable for the evaluation standard of performance-centered design.

A Study on the Response Characteristics of Fire Detector by Full-scale Experiment of Fire Phenomena in the Row House (주택 실물화재실험에 의한 화재감지기 응답특성에 관한 연구)

  • SaKong, Seong-Ho;Kim, Shi-Kuk;Lee, Chun-Ha;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • This paper is for response feature of fire detectors not only to analysis response feature of fire detector, but also to observe flame spread of inside-building and fire enlargement by using the row house which is supposed to be broken up. Many kinds of popular detectors such as heat type detector(differential type, fixed temperature type, Analogue type)and smoke type(light scattered type, Analogue type, single alarm type) were installed in the house in order to check for the change of temperature by installing of thermocouples. As a result, smoke detectors are better than heat detectors when it comes to making effective fire-detect system in the row house.

Study on the Operation Characteristics of Heat Detectors through Fire and Wind Tunnel Experiment (풍동실험과 화재실험을 통한 열감지기의 동작특성에 관한 연구)

  • Ryu, Hocheol;Kim, Doohyun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • The heat detector detects heat in the fire and is an important core element of the automatic fire alarm system used generally for every fire prevention objects. The heat detector is distinguished in spot type and spread type and in spot type, there are differential and thermistor types. These heat detectors give a great influence on the loss of people and property according to the sensitivity of response such as operation time and operation temperature in actual fire and in overseas people apply it for the development of products that can be operated in the early stage of fire including certification, quality management, and comparison standard by introducing response time index through the theory of heat balance that considers the heat loss and ventilation tests. In Korea, the response time index is introduced and used in the head of sprinkler products, but it is not applied to the heat detector at present. It is necessary to introduce the response time index that shows the sensitivity of response of the heat detector the installation standard for the heat detector that the response time index is applied should be different according to the fire weight, danger degree of fire, and shape of buildings. Through this study, it tries to help reduce lives and property of people through the swift warning by installing detectors suitable for the building structure.