• Title/Summary/Keyword: Differential Effective Medium Model

Search Result 11, Processing Time 0.024 seconds

Analytical Study on Effective Thermal Conductivity of Three-Phase Composites (3상 복합재의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2931-2938
    • /
    • 2011
  • Effective thermal conductivity of three-phase composites, consisting of matrix and two kinds of spherical inclusions, has been derived as an explicit form by extending modified Eshelby model (MEM) for two-phase composites. The present results are compared with those by differential effective medium model (DEMM), which are also compared with the experimental results of two- and three-phase composites in the literatures to be validated. For two-phase composites, the results by MEM are better than those by DEMM for the inclusion volume fraction smaller than 0.5. Comparisons between the results by two models and experimental results have been made for three-phase composite, resulting in that MEM predicts better than DEMM for smaller volume fraction of the inclusion having larger inclusion-to-matrix thermal conductivity ratio, but DEMM predicts better as its volume fraction increases. It has been observed through parametric study that its volume fraction is the critical factor affecting the deviation of predictions by the two models. The results by them show a good agreement with the three-phase composite proposed by Molina et al..

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubes-reinforced sandwich microplates considering structural damping

  • Shokravi, Maryam;Jalili, Nader
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.583-593
    • /
    • 2017
  • This research deals with the nonlocal temperature-dependent dynamic buckling analysis of embedded sandwich micro plates reinforced by functionally graded carbon nanotubes (FG-CNTs). The material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT) in which the size effects are considered using Eringen's nonlocal theory. The differential quadrature (DQ) method in conjunction with the Bolotin's methods is applied for calculating resonance frequency and dynamic instability region (DIR) of structure. The effects of different parameters such as volume percent of CNTs, distribution type of CNTs, temperature, nonlocal parameter and structural damping on the dynamic instability of visco-system are shown. The results are compared with other published works in the literature. Results indicate that the CNTs have an important role in dynamic stability of structure and FGX distribution type is the better choice.

Comparison of different cylindrical shell theories for stability of nanocomposite piezoelectric separators containing rotating fluid considering structural damping

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, G.A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.691-714
    • /
    • 2017
  • Rotating fluid induced vibration and instability of embedded piezoelectric nano-composite separators subjected to magnetic and electric fields is the main contribution of present work. The separator is modeled with cylindrical shell element and the structural damping effects are considered by Kelvin-Voigt model. Single-walled carbon nanotubes (SWCNTs) are used as reinforcement and effective material properties are obtained by mixture rule. The perturbation velocity potential in conjunction with the linearized Bernoulli formula is used for describing the rotating fluid motion. The orthotropic surrounding elastic medium is considered by spring, damper and shear constants. The governing equations are derived on the bases of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT). The nonlinear frequency and critical angular fluid velocity are calculated by differential quadrature method (DQM). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the stability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that with increasing volume fraction of SWCNTs, the frequency and critical angular fluid velocity are increased.

Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs

  • Farokhian, Ahmad;Kolahchi, Reza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.555-563
    • /
    • 2020
  • The objective of present paper is assessment of dynamic buckling behavior of an embedded sandwich microplates in thermal environment in which the layers are reinforced through functionally graded carbon nanotubes (FG-CNTs). Therefore, mixture rule is taken into consideration for obtaining effective material characteristics. In order to model this structure much more realistic, Kelvin-Voigt model is presumed and the sandwich structure is rested on visco-Pasternak medium. Exponential shear deformation theory (ESDT) in addition to Eringen's nonlocal theory are utilized to obtain motion equations. Further, differential cubature method (DCM) as well as Bolotin's procedure are used to solve governing equations and achieve dynamic instability region (DIR) related to sandwich structure. Different parameters focusing on volume percent of CNTs, dispersion kinds of CNTs, thermal environment, small scale effect and structural damping and their influences upon the dynamic behavior of sandwich structure are investigated. So as to indicate the accuracy of applied theories as well as methods, the results are collated with another paper. According to results, presence of CNTs and their dispersion kind can alter system's dynamic response as well.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects

  • Golabchi, Hadi;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.431-440
    • /
    • 2018
  • Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles ($SiO_2$) is presented in this paper. Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton's principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration, boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe. Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid velocity of the pipe.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Simulation of lesion-to-liver contrast difference curves in Dynamic Hepatic CT with Pharmacokinetic Compartment Modeling (Pharmacokinetic Compartment Modeling을 이용한 나선식 CT 에서의 간암-간 대조 곡선의 Simulation)

  • Kim, S.J.;Lee, K.H.;Kim, J.H.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.271-272
    • /
    • 1998
  • Contrast-enhanced CT has an important role in the assessment of liver lesions. However, the optimal protocol to get most effective result is not clear. The main principle for deciding injection protocol is to optimize lesion detectability by rapid scanning when lesion-to-liver contrast is maximum. For this purpose, we developed a physiological model of contrast medium enhancement based on the compartment modeling and pharmacokinetics. Blood supply to liver was modeled in two paths. This dual supply character distinguishes the CT enhancement of liver from that of the other organs. The first path is by hepatic artery and the second is by portal vein. It is assumed that only hepatic artery can supply blood to hepatocellular carcinoma (HCC) compartment. It is known that this causes the difference of contrast enhancement between normal liver tissue and hepatic tumor. By solving differential equations for each compartment simultaneously using computer program Matlab, CT contrast-enhancement curves were simulated. Simulated enhancement curves for aortic, hepatic, portal vein, and HCC compartments were compared with mean enhancement curves from 24 patients exposed to the same protocols as simulation. These enhancement curves were in a good agreement. Furthermore, we simulated lesion-to-liver curves for various injection protocols, and analyzed the effects. These may help to optimize the scanning protocols for good diagnosis.

  • PDF