• Title/Summary/Keyword: Different soil layers

Search Result 210, Processing Time 0.021 seconds

Biodiversity and Phylogenetic Analysis of Streptomyces Collected from Bamboo Forest Soil (대나무 산림토양으로부터 수집한 Streptomyces 속 방선균의 계통학적 다양성)

  • Lee, Hyo-Jin;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.262-269
    • /
    • 2010
  • To investigate a quantitative evaluation of the actinobacteria, we have collected samples from various kinds of bamboo forest soil. Each different layers contained $2.7{\times}10^6-2.7{\times}10^8$ CFU/g of actinobacteria which was the highest in litter layers of Sasa boreali forest soil. We obtained 330 actinobacteria from different layers of bamboo forest soil; litter (100 strains), humus (70 strains), and rhizosphere soil (160 strains). Based on the colony morphology (aerial mycelium, substrate mycelium, and soluble pigment), isolates were divided into thirty-six groups and we selected 50 representative isolates. 16S rRNA gene sequence analysis showed Streptomyces was major actinobacteria (94%) and they were categorized as cluster I (2 strains), II (35 strains), III (6 strains), and IV (7 strains), respectively. The diversity index of 50 Streptomyces collected from the bamboo forest soil was calculated with the Shannon-Wiener method. Bamboo litter showed higher diversity index level of 3.33 than that of humus and rhizosphere soil. Also, antibiotic activities of our isolates were investigated against Botrytis cinerea, Xanthomonas campestris, Xanthomonas axonopodis pv. vesicatoria, and Bacillus cereus and found in 74, 16, 25, and 24 strains, respectively.

Failure pattern of twin strip footings on geo-reinforced sand: Experimental and numerical study

  • Mahmoud Ghazavi;Marzieh Norouzi;Pezhman Fazeli Dehkordi
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.653-671
    • /
    • 2023
  • In practice, the interference influence caused by adjacent footings of structures on geo-reinforced loose soil has a considerable impact on their behavior. Thus, the goal of this study is to evaluate the behavior of two strip footings in close proximity on both geocell and geogrid reinforced soil with different reinforcement layers. Geocell was made from geogrid material used to compare the performance of cellular and planar reinforcement on the bearing pressure of twin footings. Extensive experimental tests have been performed to attain the optimum embedment depth and vertical distance between reinforcement layers. Particle image velocimetry (PIV) analysis has been conducted to monitor the deformation, tilting and movement of soil particles beneath and between twin footings. Results of tests and PIV technique were verified using finite element modeling (FEM) and the results of both PIV and FEM were used to utilize failure mechanisms and influenced shear strain around the loading region. The results show that the performance of twin footings on geocell-reinforced sand at allowable and ultimate settlement ranges are almost 4% and 25% greater than the same twin footings on the same geogrid-reinforced sand, respectively. By increasing the distance between twin footings, soil particle displacements become smaller than the settlement of the foundations.

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

Water and Air Movement in Bounded Layered Soil (다층토양에서의 물과 공기의 움직임)

  • 선우중호
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.56-60
    • /
    • 1975
  • Traditional descriptions of water movement in soils and of calculations of infiltration rates neglect the air movement and its compressibility. The movement of two fluids in the bounded layered porous medium is treated analytically and computer simulations are conducted for given boundary conditions and initial saturation profiles. The movement of a given saturation across the interface between the different soil layers is theoretically developed by considering the conservation of mass. It is shown that the existence of the interface affects the infiltration rate when the average total velocity is greater than zero. The transition from one layer to another layer cause a change in the capillary drive and consequently influences the infiltration rate.

  • PDF

Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation

  • Yang, X.L.;Zhang, R.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.217-235
    • /
    • 2017
  • The stability prediction of shallow buried tunnels is one of the most difficult tasks in civil engineering. The aim of this work is to predict the state of collapse in shallow tunnel in layered soils by employing non-associated flow rule and nonlinear failure criterion within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of dilation on the collapse mechanism of shallow tunnel. Furthermore, the seepage forces and surface settlement are considered to analyze the influence of different dilation coefficients on the collapse shape. Two different curve functions which describe two different soil layers are obtained by virtual work equations under the variational principle. The distinct characteristics of falling blocks up and down the water level are discussed in the present work. According to the numerical results, the potential collapse range decreases with the increase of the dilation coefficient. In layered soils, both of the single layer's dilation coefficient and two layers' dilation coefficients increase, the range of the potential collapse block reduces.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Analysis of Soil Moisture Recession Characteristics in Conifer Forest (침엽수 산림에서의 토양수분 감쇄특성 분석)

  • Hong, Eun-Mi;Choi, Jin-Yong;Nam, Won-Ho;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Forest area covers 64 % of the national land of Korea and the forest plays a pivotal role in the hydrological process such as flood, drought, runoff, infiltration, evapotranspiration, etc. In this study, soil moisture monitoring for conifer forest in experimental forest of Seoul National University has been conducted using FDR (Frequency Domain Reflection) for 6 different soil layers, 10, 20, 30, 60, 90 and 120 cm during 2009~2010, and precipitation data was collected from nearby AWS (Automatic Weather Station). Soil moisture monitoring data were used to estimate soil moisture recession constant (SMRC) for analyzing soil moisture recession characteristics. From the results, empirical soil moisture recession equations were estimated and validated to determine the feasibility of the result, and soil moisture contents of measured and calculated showed a similar tendency from April to November. Thus, the results can be applied for soil moisture estimation and provided the basic knowledge in forest soil moisture consumption. Nevertheless, this approach demonstrated applicability limitations during winter and early spring season due to freezing and melting of snow and ice causing peculiar change of soil moisture contents.

Acid Precipitation and Water Cycling (산성강수와 물의 순환)

  • ;M. Krieter
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.159-169
    • /
    • 1994
  • This paper describes the process of acidic precipitation from the atmosphere to the ground water, The net deposition of wet precipitation to the ground surface is obtained by subtracting the interception loss due to plant leaves and evaporation from the amount of total precipitation. As the water immerses through the vegetation and the different soil layers the various chemical reactions take place. The relationship between the acidic precipitation by increasing industrial emissions and the soil acidification mechanism is discussed. The report focuses on the buffering action that involves the proton budget in soil and rocks. Based on the soil constituents, the six buffer ranges of the soil are classified and each buffering process is illustrated. In addition, the Possibility of the contamination of drinking-water reservoirs by continuous acid burden is emphasized.

  • PDF