• Title/Summary/Keyword: Different Types of Sensors

Search Result 227, Processing Time 0.024 seconds

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

Characteristics and Fabrication of Complementary Electrochromic Device ( I ) (상보형 일렉트로크로믹 소자의 제조 및 특성 ( I ))

  • Lee, S.Y.;Seo, D.K.;Kim, Y.H.;Cho, T.Y.;Chun, H.G.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.24-34
    • /
    • 1997
  • In this study, two different types of complementary electrochromic devices using amorphous $WO_{3}$ films as a working electrode, $V_{2}O_{5}$ film and NiO film as counter electrodes respectively were investigated. For the devices using amorphous and crystalline $V_{2}O_{5}$ films of $100{\sim}150nm$ thickness with $ITO/WO_{3}/LiClO_{4}-PC/V_{2}O_{5}/ITO$ structure, an optical modulation of $50{\sim}60%$ were obtained at a potential range of $1{\sim}2V$. It has been shown that transmittance and reflectance of light could be electrically controlled by low applied voltage. For the devices with $ITO/WO_{3}/LiClO_{4}-PC/NiO/ITO$ structure in which NiO film was deposited by a RF reactive sputtering, the optical modulation in visible light region (${\lambda}=550nm$) and in near infrared light region (${\lambda}=850nm$) were 25% and 30%, respectively.

  • PDF

Physical Modeling of Horizontal Force on the Inland Vertical Structure by Tsunami-like Waves (육상의 직립구조물에 미치는 지진 해일에 의한 수평 파력 및 파압에 대한 수리모형실험)

  • Park, Hyongsu;Cox, Daniel;Shin, Sungwon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.363-368
    • /
    • 2017
  • The tsunami flood the coastal cities and damage the land structures. The study on wave pressure and force on land structures is one of the important factors in designing the stability of inland structures. In this study, two - dimensional wave flume tests on the horizontal wave force and pressure of tsunamis on a simplified box-type structure was conducted. Vertical distribution and wave power of horizontal wave pressure over time were measured by pressure sensors and force transducer. Also, those were measured from the different wave breaking types. The vertical distribution of horizontal wave pressure was uniform at the moment when the horizontal wave force to the structure was maximum under the breaking wave condition. A surf similarity parameter was employed in order to figure out the relationship between the maximum horizontal wave force on the structure as a function of various incident wave conditions. As a result, the non - dimensionalized horizontal wave force tends to decrease exponentially as the surf similarity parameter increases.

Dual Photonic Transduction of Porous Silicon for Sensing Gases (이중의 광학적 변화를 이용한 다공성 실리콘 가스센서 제작)

  • Koh, Young-Dae;Kim, Sung-Jin;Jang, Seung-Hyun;Park, Cheol-Young;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.99-104
    • /
    • 2007
  • Porous silicon exhibiting dual optical properties, both $Febry-P{\acute{e}}rot$ fringe (optical reflectivity) and photoluminescence had been developed and used as chemical sensors. Porous silicon samples were prepared by an electrochemical etch of p-type silicon wafer (boron-doped, <100> orientation, resistivity ; $1-10{\Omega}cm$). Two different types of porous silicon, fresh porous silicon (Si-H terminated) and oxidized porous silicon (Si-OH terminated)by the thermal oxidation, were prepared. Then the samples were exposed to the vapor of various organics, such as methanol, acetone, hexane, and toluene. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic vapors for sensing VOC's. These surface-modified samples showed unique respond in both reflectivity and photoluminescence with various organic vapors. While polar molecules exhibit greater quenching photoluminescence, molecules having higher vapor pressure show greater red shift for reflectivity.

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF