• 제목/요약/키워드: Different Thickness

검색결과 4,570건 처리시간 0.03초

탄소성 유한요소 해석을 통한 곡관 두께에 따른 파손 위치 및 균열 진전 방향 분석 (Analysis of the Elbow Thickness Effect on Crack Location and Propagation Direction via Elastic-Plastic Finite Element Analysis)

  • 김재윤;이종민;김윤재;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.26-35
    • /
    • 2022
  • When piping system in a nuclear power plant is subjected to a beyond design seismic condition, it is important to accurately determine possibility of crack initiation and, if initiation occurs, its location and time. From recent experimental works on elbow pipes, it was found that the crack initiation location and crack propagation direction of the SA403 WP316 stainless steel elbow pipe were affected by the pipe thickness. In this paper, the crack initiation location and crack propagation direction for SA403 WP316 stainless steel elbow pipes with different thickness were analyzed via elastic-plastic finite element analysis. Based on FE results, the effect of the pipe thickness on different crack initiation location and crack propagation direction was analyzed using ovality, stress and strain components. It was also confirmed that the presence of internal pressure had no effect on the crack initiation location and crack propagation direction.

익형 뒷전 형상이 날개 공력 특성에 미치는 영향 (STUDY ON THE EFFECTS OF AIRFOIL TRAILING EDGE SHAPE ON THE WING AERODYNAMICS)

  • 김왕현;류기명;김병수
    • 한국전산유체공학회지
    • /
    • 제19권4호
    • /
    • pp.75-79
    • /
    • 2014
  • In the paper, a study on the analysis of the effects of trailing edge thickness on the aerodynamic characteristics of an airfoil is described. In this research, modification of the formula representing NACA symmetric airfoil is studied to change the airfoil shape with different trailing edge thickness of user's choice. According to the result of aerodynamic characteristics, as the trailing edge thickness increases the maximum lift coefficient increases while the lift-to-drag ratio decreases. In this paper flow calculation results are demonstrated and the analysis on those results and findings on the effects of non-zero thickness of trailing edge are suggested.

항공기 박판 구조의 가공가능 폭과 두께에 관한 실험 연구 (An Experiment of Machineable Width and Thickness of Airframe Thin Plate Structure)

  • 신용보;김수진
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.162-167
    • /
    • 2013
  • The most important factor in an aircraft manufacturing is stability and weight reduction. Most of aircraft components are designed with thin plate type to satisfy weight reduction needs. The thin plate is difficult to be machined because it is apt to be vibrated by dynamic force generated in milling process. The most critical factor in machining of aluminum thin plate is width and thickness between stiffeners. So we tested many cases to find out the machinable minimum thickness at different width between stiffeners. And with the data obtained from many tests, this papers suggested the standard width thickness relation that is machinable without vacuum fixture. Machinist will be able to reduce the cost of aircraft thin plate parts by reducing the number of vacuum fixture used by the help of this standard.

레이저 키홀 용접의 열원 모델링: Part 2-간극과 두께 차이의 영향 (Heat Source Modeling of Laser ]Keyhole Welding: Part 2-Effects of Cap and Thickness Difference)

  • 이재영;이원범;유중돈
    • Journal of Welding and Joining
    • /
    • 제23권1호
    • /
    • pp.55-60
    • /
    • 2005
  • A three-dimensional Gaussian heat source model is modified to include the effects of the gap and thickness-difference for the laser keyhole welding. The gap of the butt joint influences the welding efficiency such that the melting area decreases linearly with the gap. When the different plate thickness is used such as the tailored blank welding, melting areas of the thick and thin plates are predicted by introducing the thickness-difference factor. The calculated results using the modified heat source show reasonably good agreements with the experimental results.

PMMA(Poly Methyl Methacrylate) 코팅층 두께 및 적용하중에 따른 마멸기구 분석 (Effects of thickness and applied load on wear mechanisms of PMMA (Poly Methyl Methacrylate) coating layers)

  • 강석하;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2004
  • Effects of sliding speed, applied load, counterpart radius and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a sol-gel technique with two different thicknesses, $1.5{\mu}m\;and\;0.8{\mu}m$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms were investigated by examining worn surfaces by an SEM. Under most of sliding test conditions, the thicker layer with the thickness of $1.5{\mu}m$ showed lower fiction coefficient than the thinner layer. Effects of sliding speed and counterpart's radius on the frictional behavior were varied depending on the thickness of the coating layer.

  • PDF

Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness

  • Javed, Saira;Viswanathan, K.K.;Aziz, Z.A.;Lee, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1001-1020
    • /
    • 2016
  • The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.

SL 광조형 공정에서 고전적층이론을 적용한 곡률 변형 예측 (Prediction of Curl Distortion using Classical Lamination Theory in Stereolithography)

  • 김기대;이재곤
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.210-217
    • /
    • 2005
  • A curl distortion induced by shrinkage during stereolithography polymerization process is analyzed with the classical lamination theory. Test parts of different layer thickness and part thickness are manufactured and their deformations are measured with CMM. Curl distortion is generated by the differential shrinkage of the layers, where the total shrinkage includes the shrinkages due to solidification and the change of temperature. It is shown that the curl distortion increases exponentially with decreasing the total thickness of the part, whose smaller layer thickness induces larger curl distortion. It is verified that only a part of the total shrinkage plays a role in generating the curl distortion.

ATOS 55강의 열처리 온도와 두께 변화에 따른 피로균열성장거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior by the Variation of Heat Treatment Temperature and Thickness in ATOS 55 Steel)

  • 오환교
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.15-20
    • /
    • 1997
  • This study is to investigate the behavior of fatigue crack growth with ATOS 55 steel which can be applied to the commercial car Dump Frame. It is to obtain the material coefficients after tensile and fatigue crack growth test with the variation of thickness or heat treatment. Also, that is proved the Pari's law by experiment. The summarized results are as follows ; 1) Increasing thickness, tensile and yield strength measured highly regardless to heat treatment and measured lowly as variation of heat treatment temperature. 2) Specimen of thickness 8.0㎜ measured the faster of crack growth rate than another thickness according to the results of experiment. It was the different of stress conditions in crack tip. 3) It was found that the experimental constant m was range of 2∼5 to the relationship between fatigue crack growth rate and stress intensity factor range. Also, it was to prove the Paris's law by the experiment.

  • PDF

노즐립 두께가 초음속 제트의 소음특성에 미치는 영향 (Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise)

  • 권용훈;청목준지;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향 (The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films)

  • 최종운;강계명
    • 한국표면공학회지
    • /
    • 제44권6호
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.