• Title/Summary/Keyword: Different Factory

Search Result 290, Processing Time 0.025 seconds

Factory Production Management of Modular Units Using MFD 2019 (MFD 2019를 활용한 모듈러 유닛의 공장생산 관리)

  • Lee, Doo-Yong;Nam, Sung-Hoon;Lee, Jae-Sub;Jung, Dam-I;Kim, Kyoung-rai;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.

Comparison of Plant Growth and Glucosinolates of Chinese Cabbage and Kale Crops under Three Cultivation Conditions

  • Kim, Kyung Hee;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the effect of cultivation conditions on the growth and glucosinolate content of Chinese cabbage and kale. Methods: Chinese cabbage and kale were grown in three different cultivation conditions, including a plant factory, greenhouse, and open field. Samples were collected at two harvesting times (10 d and 20 d after transplanting the seedlings). Nine growth parameters (plant height, plant width, number of leaves, petiole diameter, SPAD readout, leaf length, leaf width, stem diameter, and plant weight) were measured immediately after harvesting, and the samples were freeze-dried and stored until the glucosinolate content was analyzed. Mean values of the growth parameters and glucosinolate contents were evaluated using Duncan's multiple range tests. Results: The results indicated that the plant parameters of the Chinese cabbage and kale were greater for plants grown in the plant factory and greenhouse. The plant height, width, and weight showed significant differences in the Duncan's multiple range tests at a 5% level. The plant factory also produced greater contents of most of the glucosinolates. Conclusions: Three different cultivation conditions significantly affected the growth and glucosinolate contents of Chinese cabbage and kale. Further study is necessary to investigate other functional components and different vegetable varieties.

Digital Assembly Simulation of Micro Factory Constructed with Rectangular Pattern (사각패턴으로 구축된 초소형 공장의 디지털 조립 시뮬레이션)

  • Park, Sang-Ho;Choi, Sung-Il;Subramaniyam, Murali;Seo, Joo-Hyun;Song, Joon-Yub;Park, Se-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.64-69
    • /
    • 2008
  • In recent years, most of the researchers have been working on micro system manufacturing technological environment. With this international trend and one of the key researches in Korea, this paper gives the keynote on manufacturing the micro-scaled part with digital micro factory and its simulation. In order to construct and estimate reconfigurable simulation time, the digital simulation has been performed for the micro factory and for ultra small machines. From simulation result we came to know that micro factory requires less work-in space and processing time to manufacture micro-scaled part with different environment.

Plan for Risk Reduction of Smart Factory Process through Accident Analysis and Status Survey (재해분석과 실태조사를 통한 스마트 팩토리 공정의 위험성 감소 방안)

  • Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.22-32
    • /
    • 2022
  • The domestic smart factory is being built and spread rapidly, mainly by mid-sized companies and large enterprises according to the government's active introduction and support policy. But these factories only promote production system and efficiency, so harmfulness and risk factors are not considered. Therefore, to derive harmful risk factors in terms of industrial safety for 12,983 government-supported smart factory workplaces from 2014 to 2019, industrial accident status analysis compared workplaces with automation facilities and government-supported workplaces with automation facilities. Also, to reduce risks associated with domestic smart factory processes, twenty government-supported workplaces with automation facilities underwent analysis, evaluating risks through a status survey using the process evaluation table. In addition, the status survey considered region, size, industry, construction level, and accident rate; the difference in risk according to the structure of the process was confirmed. Based on the smart factory process evaluation results, statistical analysis confirmed that serial, parallel, and hybrid structures pose different risk levels and that the risks of mixed structures are greater. Finally, safety control system application was presented for risk assessment and reduction in the smart factory process, reflecting the results of disaster analysis and actual condition investigation.

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Growth of Runner Plants Grown in a Plant Factory as Affected by Light Intensity and Container Volume

  • Park, Seon Woo;Kwack, Yurina;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2017
  • Transplant production in a plant factory with artificial lighting provides several benefits; (1) rapid and uniform transplant production, (2) high production rate per unit area, and (3) production of disease free transplants production. To improve the growth of runner plants when strawberry transplants are produced in a plant factory, we conducted two experiments to investigate (1) the effect of different light intensity for stock and runner plants on the growth of runner plants, and (2) the effect of different container volume for runner plants on their growth. When the stock and runner plants were grown under nine different light conditions composed of three different light intensities (100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF) for each stock and runner plants, increasing the light intensity for stock plants promoted the growth of runner plants, however, the growth of runner plants was not enhanced by increasing the light intensity for runner plants under same light intensity condition for stock plants. We also cultivated runner plants using plug trays with four different container volumes (21, 34, 73, and 150 mL) for 20 days after placing the stock plants, and found that using plug trays with lager container volume did not enhance the growth of runner plants. These results indicate that providing optimal condition for stock plants, rather than the runner plants, is more important for increasing the growth of the runner plants and that the efficiency of strawberry transplant production in a plant factory can be improved by decreasing light intensity or container volume for runner plants.

The Economic Design of the Multi-stage Distribution System Using Different Supplier according to Order Size (주문크기에 따라 다른 공급처를 이용하는 다단계 물류시스템의 경제적 설계)

  • 장석화
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.1
    • /
    • pp.85-94
    • /
    • 2003
  • In this paper, a mathematical model is developed for economic design of multi-stage distribution system that consists of factory, central distribution centers, local distribution centers and retailers. The retailers are supplied products from different stage suppliers according to order size. The retailers are supplied products from factory if demand amount is large, central distribution center if medium, local distribution center if small. The economic design is to determine the economic size of facility factors that consist of distribution system. The cost factors are transportation cost from supply places to demand places, handling cost at distribution centers and inventory holding cost at retailers. It is to determine the transportation route of each retailer, the size and number of the vehicle at factory and distribution centers, the handling amount at distribution centers in order to minimize the total costs. The mathematical model is represented, the solution procedure is developed, and a numerical example is shown.

Analyzing Technological Trends of Smart Factory using Topic Modeling

  • Hussain, Adnan;Kim, Chulhyun;Battsengel, Ganchimeg;Jeon, Jeonghwan
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.3
    • /
    • pp.380-403
    • /
    • 2021
  • Recently, smart factories have gained significant importance since the development of the fourth industrial revolution and the rise of global industrial competition. Therefore, the industries' survival to meet the global market trends requires accurate technological planning. Although, different works are available to investigate forecasting technologies and their influence on the smart factory. However, little significant work is available yet on the analysis of technological trends concerning the smart factory, which is the core focus herein. This work was performed to analyze the technological trends of the smart factory, followed by a detailed investigation of recent research hotspots/frontiers in the field. A well-known topic modeling technique, namely Latent Dirichlet Allocation (LDA), was employed for this study described above. The technological trends were further strengthened with the in-depth analysis of a smart factory-based case study. The findings produced the technological trends which possess significant potential in determining the technological strategies. Moreover, the results of this work may be helpful for researchers and enterprises in forecasting and planning future technological evolution.

Improvement of Factory Data in Industrial Land Information System (산업입지정보시스템 공장정보 개선에 관한 연구)

  • Choe, Yu-Jeong;Lim, Jae-Deok;Kim, Seong-Geon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.97-106
    • /
    • 2020
  • The factory information provided by the Industrial Location Information System (ILIS) is provided as raw data by the Korea Industrial Complex Corporation and registered after a filtering process, so the new factory information update is slow. In this study, to solve the problem of updating factory information of industrial location information system, using building data of road name address with relatively fast renewal cycle and building data of real estate, we compared the factory information of existing ILIS and extracted new factory information. In the process of comparison, a method was proposed to compare spatial objects of different types with point data and polygon data. Attribute information matching and object matching were performed, and attribute values of new factory information were extracted. The accuracy evaluation of the proposed spatial analysis method showed 79% accuracy, and the above matching technique was used to confirm the possibility of convergence of road name address data, real estate data and factory information of ILIS.

Identification of Loliolide with Anti-Aging Properties from Scenedesmus deserticola JD052

  • Dae-Hyun Cho;Jin-Ho Yun;Jina Heo;In-Kyoung Lee;Yong-Jae Lee;Seunghee Bae;Bong-Sik Yun;Hee-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1250-1256
    • /
    • 2023
  • Herein, different extracts of Scenedesmus deserticola JD052, a green microalga, were evaluated in vitro as a potential anti-aging bioagent. Although post-treatment of microalgal culture with either UV irradiation or high light illumination did not lead to a substantial difference in the effectiveness of microalgal extracts as a potential anti-UV agent, the results indicated the presence of a highly potent compound in ethyl acetate extract with more than 20% increase in the cellular viability of normal human dermal fibroblasts (nHDFs) compared with the negative control amended with DMSO. The subsequent fractionation of the ethyl acetate extract led to two bioactive fractions with high anti-UV property; one of the fractions was further separated down to a single compound. While electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy analysis identified this single compound as loliolide, its identification has been rarely reported in microalgae previously, prompting thorough systematic investigations into this novel compound for the nascent microalgal industry.