• Title/Summary/Keyword: Difference method

Search Result 18,161, Processing Time 0.045 seconds

A Comparison between 3-D Analytical and Finite Difference Method for a Trapezoidal Profile Fin

  • Lee, Sung-Joo;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.41-50
    • /
    • 2001
  • A comparison is made of the temperature distribution and heat loss from a trapezoidal profile fin using two different 3-dimensional methods. These two methods are analytical and finite difference methods. In the finite difference method 78 nodes are used for a fourth of the fin. A trapezoidal profile fin being the height of the fin tip is half of that of the fin base is chosen arbitrarily as the model. One of the results shows that the relative error in the total convection heat loss obtained by using 78 nodes in the finite difference method as compared to the heat conduction through the fin root obtained by analytic method seems to be good (i.e., -3.5%

  • PDF

Novel Driving System of 2-Phase Induction Motor Driven with Voltage Source Inverter (인버어터 구동 2상 유도 전동기의 새로운 구동 방식에 관한 연구)

  • Jang, Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.481-491
    • /
    • 1989
  • A compensation strategy for the phase-difference control method, which has been reported as a new driving method of a 2-phase inverter-fed induction motor, is proposed. The phase-difference control method extends the control range of the speed and eliminates the harmonic contents of the output voltage of the 2-phase inverter-fed induction motor. However, the phase-difference angle becomes narrower, motor efficiency deceases more and pulsating torque increases more. As the counterplan for these shortcomings of the phase-difference control method, a hybrid control method which combines the phase-difference control with the voltage control is proposed. The algorithm to realize a hybrid method is presented. As an example, a model composed of 5 regions has been analyzed by computer simulation in terms of motor performance and the results have been compared with experimental results.

One-node and two-node hybrid coarse-mesh finite difference algorithm for efficient pin-by-pin core calculation

  • Song, Seongho;Yu, Hwanyeal;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.327-339
    • /
    • 2018
  • This article presents a new global-local hybrid coarse-mesh finite difference (HCMFD) method for efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)-based two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems with boundary conditions of incoming partial current, and they can be solved in parallel. The global problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method. We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD algorithm was also parallelized with the OpenMP parallel interface, and its numerical performances were evaluated for several benchmarks.

A Study on Numerical Method for Motion Analysis of Cylindrical Cam with Translate Follower (병진운동용 원통캠기구의 운동해석을 위한 수치해석법 연구)

  • 김상진;신중호;김대원;박세환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.719-722
    • /
    • 2002
  • Cylindrical cam mechanisms are used commonly in many automatic machinery. But the cylindrical cam is very difficult to design and manufacture the shape. The motion analysis of the cylindrical cam can check the accuracy between designed data and manufactured data of the cam shape and can reproduce without the cam design data. The motion analysis of the cylindrical cam consists of displacement analysis, velocity analysis and acceleration analysis. This paper performs the motion analysis of a cylindrical cam with translating follower by using a relative velocity method and a central difference method. The displacement is calculated by using the central difference method and the velocity is calculated by the relative velocity method. The relative velocity method is defined by the relative motion between follower and cam at a center of a follower roller. The central difference method is derived in the 3 dimensional space.

  • PDF

Finite Difference Method on Consolidation under Time Dependent Loading (점증하중에 의한 압밀의 유한차분해석)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1895-1899
    • /
    • 2012
  • Formulation of finite difference method for analyzing consolidation were carried out. It can be seen that the differences in settlement with time obtained by FDM and Terzaghi method are diminished by fine discretization of time increment. Excess pore pressures predicted by the derived finite difference equation were same as those calculated by Olson's method. Predicted time-settlement behavior from the derived finite difference method were almost same as those calculated by Terzaghi's method and Olson's method. Analysis results obtained from the assumed multi-step time dependent loading are thought to be reasonable.

Pointing position detection of capacitive touch screen panel using phase-difference method (위상차 방식을 사용한 용량방식 터치 스크린 패널의 접촉 위치 검출)

  • Jo, Yeong-Cheol;Jang, Rae-Hyeok;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.406-412
    • /
    • 1998
  • This paper describes a contact position detection method of a capacitive touch screen panel. The proposed method is composed of a circuited compensating algorithm generating an output signal having phase difference to an input signal associated with contact position, converts both input and output signals into digital waveform (5V logic), and calculates the phase difference. Finally, position information with the phase difference is obtained by using a low-cost microprocessor, which is convenient to compensate non-linearity error. The proposed method, that computes phase difference directly, has advantages in feasibility and cost because it minimizes the use of analog devices; rather, it utilizes, cost effective digital circuit. Analytical results are also given.

  • PDF

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.