The purpose of this study is to measure the trade insurance's macroeconomic effects by analyzing the causality between major economic variables(GDP per capita, market interest rate, inflation, unemployment rate, exchange rate) and trade insurance variable. I conducted empirical analyses using First-difference GMM(Generalized Method of Moments), System GMM and Panel-VAR Model, with panel data from 11 countries(Korea, United States, Japan, BRICs, Indonesia, Singapore, Hong Kong, Vietnam) between 1992 and 2011. There are several important findings. Above all, Trade insurance is positively and significantly related to GDP. This results show that trade insurance serves to increase economic growth. In other words, trade insurance leads to economic growth by helping increase GDP per capita. Especially, trade insurance negatively related to unemployment rate, it is for sure that trade insurance contribute to decrease unemployment rate. And trade insurance helps control of inflation. It is also confirmed that trade insurance contributes to price stability, which in turn serves to stabilize the overall economy. And this research finds as uncertainty in the market increases, seen it as increase of exchange rate, increasing trade insurance supply is stabilize the exchange rate.
This paper was focused on realizing the text-independent speaker recognizer using the VQ and GMM algorithm and studying the characteristics of the speaker recognizers that adopt these two algorithms. Because it was difficult ascertain the effect two algorithms have on the speaker recognizer theoretically, we performed the recognition experiments using various parameters and, as the result of the experiments, we could show that GMM algorithm had better recognition performance than VQ algorithm as following. The GMM showed better performance with small training data, and it also showed just a little difference of recognition rate as the kind of feature vectors and the length of input data vary. The GMM showed good recognition performance than the VQ on the whole.
본 논문에서는 대역폭 확장 (Bandwidth Extension, BWE)을 위한 대표적인 통계적 방법인 가우스 혼합 모델 (Gaussian Mixture Model, GMM) 방법과 은닉마코프 모델 (Hidden Markov Model, HMM) 방법의 관계를 분석하고 성능을 비교한다. HMM 방법은 GMM 방법과 달리 기억능력을 가진 시스템으로서 인접한 음성 프레임간의 상관성을 모델링하고 이를 BWE 시스템에 활용한다는 장점을 가진다. 따라서 원래 신호의 프레임간 스펙트럼 변화특성을 보다 잘 추정할 수 있으리라 예상할 수 있다. 이 점을 확인하기 위해 정적 측도 외에 음성 스펙트럼의 일차 도 함수와 관련된 동적 측도를 적용하였다. 성능평가 결과, 정적 측도 관점에서는 두 방법은 대등한 성능을 보였지만 동적 측도 관점에서는 HMM 방법이 우수한 성능을 보였다. 또한 이러한 차이는 HMM 모델의 상태 수에 비례하여 증가함을 확인할 수 있었다. 이와 같은 실험결과는 HMM 방법이 적어도 'blind BWE' 문제에 있어서 적절한 해법임을 시사한다. 한편, 동적 측도의 관점에서는 비록 열세로 나타났지만 GMM 방법은 상대적으로 단순하다는 장점을 가지고 있으며 특히, 정적 측도에 있어서 HMM 방법과 대등하다는 사실은 응용분야에 따라서는 HMM 방법의 효과적인 대안이 될 수 있음을 시사한다.
Kim, Min Kyu;Ko, Young Jun;Lee, Hwang Jae;Ha, Hyun Geun;Lee, Wan Hee
Physical Therapy Rehabilitation Science
/
제4권1호
/
pp.38-43
/
2015
Objective: To investigate and compare the size of the rectus femoris (RF), tibialis anterior (TA), and medial gastrocnemius (GMM) using ultrasound (US) imaging in young, elderly, and very elderly groups. Design: Cross sectional study. Methods: This study consisted of 25 young (age 20 years), 24 elderly (age 65-74 years), and 25 very elderly (age 75-90 years) people with no physical dysfunctions. The cross sectional area (CSAs) of the RF and muscle thickness of the TA and GMM were measured at rest and during contraction using an US system. Results: The CSA of the RF and thickness of the TA and GMM were significantly smaller in the elderly and very elderly groups than in the young group (p<0.05). There was a significant difference of the CSA of the RF at rest and during contraction between elderly and very elderly group (p<0.05). In the comparison of the TA and GMM thickness between elderly and very elderly groups, there were no significant differences except for the TA thickness during contraction. There was a significant difference in the percentage change in RF CSA among the three groups (p<0.05). Conclusions: Our results revealed loss of muscle mass in the RF, TA, and GMM in elderly and very elderly people (${\geq}65$ years old). In particular, the greatest age-related decline in muscle mass was observed for the RF. Furthermore, the CSA of the RF declined with aging in the very elderly groups (${\geq}75$ years old).
본 논문에서는 야간 영상 감시(night-time video surveillance)에 특화된 GMM(Gausssian mixture model)기반의 배경 모델링(background modeling)을 이용한 배경 차분(background subtraction)방법을 제안한다. 야간 영상에서는 낮 영상에 비해 배경과 객체의 구분이 뚜렷하지 않아 매우 흡사한 픽셀 값들을 이용하여 배경을 분리해야 한다. 이러한 문제점을 해결하기 위해 전처리 단계에서 조정된 범위의 히스토그램 스트레칭을 이용하여 입력 픽셀 값을 배경 모델링에 이로운 픽셀 값으로 변경해준다. 조정된 픽셀 값을 이용하여 가장 이상적인 배경을 찾기 위해 픽셀 단위로 GMM기반의 배경 모델링 방법을 적용한다. GMM을 기반으로 한 배경모델링 방법에서는 새로운 픽셀 값이 입력되었을 때 어떤 가우시안에도 속하지 않는다면 가장 낮은 가중치를 가진 가우시안 분포를 제거함으로써 이전의 축적된 배경의 정보를 무시하는 결과를 낳게 된다. 따라서 본 논문에서는 낮은 가중치의 가우시안을 제거하는 대신 기존 가우시안의 평균과 입력된 픽셀 값의 차를 이용하여 새로운 평균에 적용함으로써 기존의 쌓여진 정보를 고려한다. 실험결과 제안된 배경 모델링 방법이 기존 방법의 이점을 유지하면서 야간 영상 감지에 특화된 배경 차분 결과를 보였다.
본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.
In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).
본 논문에서는 기존의 BIC(Bayesian Information Criterion) 기반 화자변화의 성능 향상을 위하여 GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리를 활용한 화자변화 검증을 제안하였다. 정보량의 차이에 민감한 기존의 BIC 기반 화자변화검출 알고리즘을 상대적으로 정보량 차이에 견인한 KL 거리 알고리즘으로 검증하였고, 정보량의 비대칭을 보상하기 위해서 GMM-UBM을 활용하였다. 기존의 BIC 기반 화자변화 검출은 1단계로 비유사도 d가 양수인 구간의 국소 최댓값인 지점을 화자변화 후보지점으로 검출하였고, 2단계로 검출된 화자변화 후보지점 중 ${\Delta}BIC$가 양수인 지점을 화자변화지점으로 결정하였다. 본 논문에서는 BIC 기반 화자변화 검출에 의해 결정된 화자변화지점에 대하여 GMM-UBM 기반 KL 거리 D가 문턱치(threshold)보다 높은 지점을 최종 화자변화 지점으로 검증하였다. 실험결과, MDR(Missed Detection Rate)이 0인 조건에서 문턱치 0.028일 때 FAR(False Alarm Rate) 60.4%로 성능이 향상되었다.
본 논문에서는 가우시안 혼합모델과 수학적 형태학 처리를 통하여 터널 내에 설치된 고해상도 CCTV 카메라 영상에 대한 차량 검출 알고리즘을 제안한다. 먼저, CCTV 카메라로부터 입력되는 영상으로부터 가우시안 혼합모델을 이용하여 배경을 추정하고, 배경영상과 입력영상의 차영상으로부터 객체를 분리한다. 그 다음 단계로 분리된 후보 객체를 수학적 형태학 처리를 통하여 재구성한다. 최종적으로는 터널에서의 차량의 위치에 따른 크기 특징을 분석하여 차량을 검출한다. 터널에서 촬영한 영상을 이용한 시뮬레이션을 통하여 제안하는 차량 검출방법이 효과적으로 적용할 수 있음을 확인하였다.
The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.