• Title/Summary/Keyword: Difference GMM

Search Result 41, Processing Time 0.027 seconds

A Study on the Macroeconomic Effects of Trade Insurance Using Dynamic Panel Models (동태적 패널모형을 통한 무역보험의 거시경제효과 연구)

  • Nam, Sang Wook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.61
    • /
    • pp.165-190
    • /
    • 2014
  • The purpose of this study is to measure the trade insurance's macroeconomic effects by analyzing the causality between major economic variables(GDP per capita, market interest rate, inflation, unemployment rate, exchange rate) and trade insurance variable. I conducted empirical analyses using First-difference GMM(Generalized Method of Moments), System GMM and Panel-VAR Model, with panel data from 11 countries(Korea, United States, Japan, BRICs, Indonesia, Singapore, Hong Kong, Vietnam) between 1992 and 2011. There are several important findings. Above all, Trade insurance is positively and significantly related to GDP. This results show that trade insurance serves to increase economic growth. In other words, trade insurance leads to economic growth by helping increase GDP per capita. Especially, trade insurance negatively related to unemployment rate, it is for sure that trade insurance contribute to decrease unemployment rate. And trade insurance helps control of inflation. It is also confirmed that trade insurance contributes to price stability, which in turn serves to stabilize the overall economy. And this research finds as uncertainty in the market increases, seen it as increase of exchange rate, increasing trade insurance supply is stabilize the exchange rate.

  • PDF

Performance comparison of Text-Independent Speaker Recognizer Using VQ and GMM (VQ와 GMM을 이용한 문맥독립 화자인식기의 성능 비교)

  • Kim, Seong-Jong;Chung, Hoon;Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.7 no.2
    • /
    • pp.235-244
    • /
    • 2000
  • This paper was focused on realizing the text-independent speaker recognizer using the VQ and GMM algorithm and studying the characteristics of the speaker recognizers that adopt these two algorithms. Because it was difficult ascertain the effect two algorithms have on the speaker recognizer theoretically, we performed the recognition experiments using various parameters and, as the result of the experiments, we could show that GMM algorithm had better recognition performance than VQ algorithm as following. The GMM showed better performance with small training data, and it also showed just a little difference of recognition rate as the kind of feature vectors and the length of input data vary. The GMM showed good recognition performance than the VQ on the whole.

  • PDF

Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals (음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.119-128
    • /
    • 2008
  • This paper analyzes the relationship between two representative statistical methods for bandwidth extension (BWE): Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) ones, and compares their performances. The HMM method is a memory-based system which was developed to take advantage of the inter-frame dependency of speech signals. Therefore, it could be expected to estimate better the transitional information of the original spectra from frame to frame. To verify it, a dynamic measure that is an approximation of the 1st-order derivative of spectral function over time was introduced in addition to a static measure. The comparison result shows that the two methods are similar in the static measure, while, in the dynamic measure, the HMM method outperforms explicitly the GMM one. Moreover, this difference increases in proportion to the number of states of HMM model. This indicates that the HMM method would be more appropriate at least for the 'blind BWE' problem. On the other hand, nevertheless, the GMM method could be treated as a preferable alternative of the HMM one in some applications where the static performance and algorithm complexity are critical.

Ultrasound imaging for age-related differences of lower extremity muscle architecture

  • Kim, Min Kyu;Ko, Young Jun;Lee, Hwang Jae;Ha, Hyun Geun;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2015
  • Objective: To investigate and compare the size of the rectus femoris (RF), tibialis anterior (TA), and medial gastrocnemius (GMM) using ultrasound (US) imaging in young, elderly, and very elderly groups. Design: Cross sectional study. Methods: This study consisted of 25 young (age 20 years), 24 elderly (age 65-74 years), and 25 very elderly (age 75-90 years) people with no physical dysfunctions. The cross sectional area (CSAs) of the RF and muscle thickness of the TA and GMM were measured at rest and during contraction using an US system. Results: The CSA of the RF and thickness of the TA and GMM were significantly smaller in the elderly and very elderly groups than in the young group (p<0.05). There was a significant difference of the CSA of the RF at rest and during contraction between elderly and very elderly group (p<0.05). In the comparison of the TA and GMM thickness between elderly and very elderly groups, there were no significant differences except for the TA thickness during contraction. There was a significant difference in the percentage change in RF CSA among the three groups (p<0.05). Conclusions: Our results revealed loss of muscle mass in the RF, TA, and GMM in elderly and very elderly people (${\geq}65$ years old). In particular, the greatest age-related decline in muscle mass was observed for the RF. Furthermore, the CSA of the RF declined with aging in the very elderly groups (${\geq}75$ years old).

Background Subtraction based on GMM for Night-time Video Surveillance (야간 영상 감시를 위한 GMM기반의 배경 차분)

  • Yeo, Jung Yeon;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.3
    • /
    • pp.50-55
    • /
    • 2015
  • In this paper, we present background modeling method based on Gaussian mixture model to subtract background for night-time video surveillance. In night-time video, it is hard work to distinguish the object from the background because a background pixel is similar to a object pixel. To solve this problem, we change the pixel of input frame to more advantageous value to make the Gaussian mixture model using scaled histogram stretching in preprocessing step. Using scaled pixel value of input frame, we then exploit GMM to find the ideal background pixelwisely. In case that the pixel of next frame is not included in any Gaussian, the matching test in old GMM method ignores the information of stored background by eliminating the Gaussian distribution with low weight. Therefore we consider the stacked data by applying the difference between the old mean and new pixel intensity to new mean instead of removing the Gaussian with low weight. Some experiments demonstrate that the proposed background modeling method shows the superiority of our algorithm effectively.

Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM (GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법)

  • 김민정;석수영;김광수;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.512-522
    • /
    • 2002
  • In this paper, we propose a hybrid method which is mixed with frame selection and weighting model rank method, based on GMM(gaussian mixture model), for real-time text-independent speaker recognition system. In the system, maximum likelihood estimation was used for GMM parameter optimization, and maximum likelihood was used for recognition basically Proposed hybrid method has two steps. First, likelihood score was calculated with speaker models and test data at frame level, and the difference is calculated between the biggest likelihood value and second. And then, the frame is selected if the difference is bigger than threshold. The second, instead of calculated likelihood, weighting value is used for calculating total score at each selected frame. Cepstrum coefficient and regressive coefficient were used as feature parameters, and the database for test and training consists of several data which are collected at different time, and data for experience are selected randomly In experiments, we applied each method to baseline system, and tested. In speaker recognition experiments, proposed hybrid method has an average of 4% higher recognition accuracy than frame selection method and 1% higher than W method, implying the effectiveness of it.

  • PDF

A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions (손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘)

  • Jeong, Eui-Chul;Yu, Song-Hyun;Lee, Sang-Min;Song, Young-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

The Study on the Verification of Speaker Change using GMM-UBM based KL distance (GMM-UBM 기반 KL 거리를 활용한 화자변화 검증에 대한 연구)

  • Cho, Joon-Beom;Lee, Ji-eun;Lee, Kyong-Rok
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • In this paper, we proposed a verification of speaker change utilizing the KL distance based on GMM-UBM to improve the performance of conventional BIC based Speaker Change Detection(SCD). We have verified Conventional BIC-based SCD using KL-distance based SCD which is robust against difference of information volume than BIC-based SCD. And we have applied GMM-UBM to compensate asymmetric information volume. Conventional BIC-based SCD was composed of two steps. Step 1, to detect the Speaker Change Candidate Point(SCCP). SCCP is positive local maximum point of dissimilarity d. Step 2, to determine the Speaker Change Point(SCP). If ${\Delta}BIC$ of SCCP is positive, it decides to SCP. We examined verification of SCP using GMM-UBM based KL distance D. If the value of D on each SCP is higher than threshold, we accepted that point to the final SCP. In the experimental condition MDR(Missed Detection Rate) is 0, FAR(False Alarm Rate) when the threshold value of 0.028 has been improved to 60.7%.

Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing (가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출)

  • Kim, Hyun-Tae;Lee, Geun-Hoo;Park, Jang-Sik;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.967-974
    • /
    • 2012
  • In this paper, a vehicle detection algorithm with HD CCTV camera images using GMM(Gaussian Mixture Model) algorithm and mathematical morphological processing is proposed. At the first stage, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the second stage, candidated object were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations depend on distance and vehicle type in tunnel. Through real experiments in tunnel, it is shown that the proposed system works well.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.