• Title/Summary/Keyword: Diethoxy

Search Result 15, Processing Time 0.025 seconds

Ab Initio Calculated Structures and Vibrational Spectra of 1,3-Diethoxy-p-tert-butylcalix[4]crown-5-ether Complexed with Potassium Cation

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.235-240
    • /
    • 2007
  • Molecular structures were optimized for the 1,3-diethoxycalix[4]crown-5-ether (2) in the various isomers and their potassium-ion complexes by using B3LYP/6-31+G(d,p)//B1LYP/6-31G(d,p) method after ab initio RHF/6-31G calculation. The cone-shaped isomer of 2 with cr-binding mode has shown the strongest binding efficiency among the six different complexes attributed to seven electrostatic interactions between the potassium cation and the oxygen atoms of crown-5-ether and ethoxy groups of the host (2). The vibrational spectra of 2 and its K+-complexes were obtained by restricted Hartree-Fock (RHF) calculations with the 6-31G basis set. The characteristic vibrational frequencies of various C-O-C stretching and bending motions are analyzed.

Phytocompounds from T. conoides identified for targeting JNK2 protein in breast cancer

  • Sruthy, Sathish;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.153-161
    • /
    • 2022
  • c-Jun N-terminal kinases (JNKs) are members of MAPK family. Many genes can relay signals that promote inflammation, cell proliferation, or cell death which causes several diseases have been associated to mutations in the JNK gene family. The JNK2 gene is significantly more important in cancer development than the JNK1 and JNK3 genes. There are several different ways in which JNK2 contributes to breast cancer, and one of these is through its role in cell migration. As a result, this study's primary objective was to employ computational strategies to identify promising leads that potentially target the JNK2 protein in a strategy to alleviate breast cancer. We have derived these anticancer compounds from marine brown seaweed called Turbinaria conoides. We have identified compounds Ethane, 1, 1-diethoxy- and Butane, 2-ethoxy as promising anti-cancer drugs by molecular docking, DFT, and ADME study.

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

THE CRYSTAL AND MOLECULAR STRUCTURE OF 3-N-(2,2-DIETHOXY-ETHYL)-2-BENZIMIDAZOLINONE (3-N-(2,2디에토오키시에칠) -2벤즈 이미다즈오리논의 결정 및 분자구조)

  • 안중태;이숙자
    • Korean Journal of Crystallography
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 1991
  • C13H1SN203, Mr=250.29, is monoclinic, space group P21/a with a=8.765(4), b=17.679(3), c= 9.238(4) A, b=105.6(3)A, Z=4, V=1378.53 A3, A (Mo Ka)=0.71069 A, F(000)=536, T=299, R=0.080 for 1783 unique observed reflections with I > 1.0 σ(I). The structure was solved by direct methods and relined by cascade diagona! least-squares refinement. The C-H bond lengths and methyl groups were fixed and refined as their ideal geometry. One of two ethoxy groups is more twisted by 1 was compared with another. There is one hydrogen bond in the crystal lattice, N H‥‥0= 2.789A, forming a molecular pair packing along the b-axis.

  • PDF

6-(1-Hydroxy or Acyloxyalkyl)-5,8-Dialkoxy-1,4-Naphthoquinones: Synthesis, Evaluation of Cytotoxic Activity; Antitumor Activity and Inhibitory effect on DNA Topoisomerase-I (6-(1-하이드록시 또는 아실옥시알킬)-5,8-디알콕시-1,4-나프토퀴논 유도체의 합성, DNA Topoisomerase-I에 대한 억제, 세포독성 및 항암활성)

  • Kim, Yong;Choi, Su-La;Myung, Pyung-Keun;Ahn, Byung-Zun
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.141-148
    • /
    • 2000
  • A new synthetic method of 6-(1-oxyalkyl)-5,8-dimethoxy-1,4-naphthoquinones was developed, 2-formyl-1,4,5,8-tetramethoxynaphthalene was oxidized to form 6-formyl-5,8-dimethoxy-1,4-naphthoquinone(DMNQ). This was selectively reduced and benzylated to produce 6-formyl-5,8-dimethoxy-1,4-dibenzyloxynaphthalene, to which various alkylmagnesium halide were added, followed by debenzylation and oxidation in sequence, yielding 6-(1-hydroxyalkyl)-DMNQ derivatives. 6-(1-hydroxyalkyl)-5,8-diethoxy-1,4-naphthalene (DENQ) derivatives were synthesized by similar procedure. 1'-OH of the naphthoquinone derivatives was acylated with various alkanoic acids to give 6-(1-acyloxyalkyl)-DMNQ or DENQ derivatives. TOPO-I inhibitory activity and cytotoxicity of DENQs were less potent than that of DMNQs. Among the DMNQ and DENQ analogues, the ones with alkyl group being heptyl were most potent in TOPO-I inhibition $IC_{50}$/; 30.1, 36.4 $\mu$M). DUNQ derivatives with a longer side chain exhibited a weaker cytotoxicity. A correlation between size of the alkyl side chain and cytotoxicity was not observed for DENQ derivatives. Acylation of 1'-hydroxyl group, in general, decreased both TOPO-I inhibitory activity and cytotoxicity T/C (%) values of the DENQ derivatives on S-180 intraperitoneal tumor were larger than those of DMNQ derivatives. Among the compounds synthesized,6-(1-hydroxyheptyl)-DENQ and 6-(1-hex-anoyloxyoctyl)-DMNQ showed the highest T/C values of 183% and 182%, respectively.

  • PDF