• Title/Summary/Keyword: Diesel oil

Search Result 663, Processing Time 0.025 seconds

Statistical Analysis of Experimental Results on Emission Characteristics of Biodiesel Blended Fuel (바이오디젤 혼합연료의 배기특성 실험결과에 대한 통계학적 해석)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1199-1206
    • /
    • 2015
  • In this study, the exhaust gas of a diesel engine operating on biodiesel(BD) fuel(a mixture of diesel and soybean oil) was investigated for different fuel mixing ratios in the range of BD3 to BD100. The experiments were conducted using injection pressures of 400, 600, 800, 1000, and 1200 bar. The Pearson correlation coefficient and Spearman rank-order correlation coefficient were used to quantify the NOx and Soot emissions based on the fuel mixing ratio and injection pressure. Consequently, the Pearson correlation coefficient obtained for NOx and Soot emissions according to the mixing ratio and injection pressure was -0.811 and the corresponding Spearman rank-order correlation coefficient was -0.884, which indicated that the correlation of the NOx and Soot emissions was linear. Thus, the NOx and Soot have a trade-off relationship. Moreover, at each injection pressure, the Pearson correlation coefficient was a negative number, which indicated an inversely proportional relationship between NOx and Soot.

A Study of Liquid Nitrogen Inert Gas System for LNGC Diesel Engine Crank Chamber (LNGC 디젤기관 크랭크 챔버용 액체질소 불활성가스 시스템에 관한 연구)

  • Choi, Bu-Hong;Kim, Hyun-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • It is necessary to install the inert gas system(IGS) for preventing fire and explosion in LNGC main diesel engine crankcase besides oil mist detector(OMD) unit with $CO_2$ gas injector. Therefore, to design the liquid nitrogen IGS, analytical work is conducted for predicting the heat input load of liquid nitrogen heater with two-phase stratified flow model. This paper also presents the effects of changes in pipe diameter, saturated pressure, and inclination angle by ship's movement on cryogenic two-phase stratified flows. It is found that the stratified model gives reasonable predictions, and the model is effective to predict the heat input load of liquid nitrogen IGS.

Identifying Ambient PM2.5 Sources and Estimating their Contributions by Using PMF : Separation of Gasoline and Diesel Automobile Sources by Analyzing ECs and OCs (PMF 모델을 이용한 미세분진의 오염원 확인과 기여도 추정 : 탄소성분을 이용한 휘발유 및 경유차량 오염원의 분리)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.75-89
    • /
    • 2009
  • The purpose of this study was to identify $PM_{2.5}$ sources and to estimate their contributions to the border of Yongin-Suwon area, based on the analysis of the $PM_{2.5}$ mass concentration and the associated inorganic elements, ions and carbon components. The contribution of $PM_{2.5}$ sources were estimated by using a positive matrix factorization (PMF) model to identify air emission sources. For this study, $PM_{2.5}$ samples were collected from May, 2007 to April, 2008. The inorganic elements were analyzed by an ICP-AES. The ionic components in $PM_{2.5}$ were analyzed by an Ie. The carbon components were also analyzed by DRI/OGC analyzer. After performing PMF modeling, a total of 12 sources were identified and their contributions were quantitatively estimated. The contributions from each emission source were as follows: 11.3% from oil combustion source, 3.4% from bus/highway source, 5.8% from diesel vehicle source, 4.7% from gasoline vehicle source, 8.8% from biomass burning source, 15.1 % from secondary sulfate, 5.2% from secondary nitrate source, 13.4% from industrial related source, 4.1% from Cl-rich source, 19.6% from soil related source, 1.0% from aged sea salt, and 7.4% from coal combustion source, respectively. This study provides basic information on the major sources affecting air quality, and then it will help to effectively control $PM_{2.5}$ in this study area.

A Study on the Development of Source Profiles for Fine Particles (PM2.5) (미세입자(PM2.5)의 배출원 구성물질 성분비 개발에 관한 연구)

  • 이학성;강충민;강병욱;이상권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.317-330
    • /
    • 2004
  • The Purpose of this study was to develop the P $M_{2.5}$ source Profiles, which are mass abundances (fraction of total mass) of a chemical species in P $M_{2.5}$ source emissions. The source categories studied were soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal-fired power plant, biomass burning, and marine. The chemicals analyzed were ions. elements. and carbons. From this study, soil source had the crustal components such as Si, hi, and Fe. In the case of road dust. Si, OC, Ca, Fe had large abundances. The abundant species were S $O_4$$^{2-}$, C $l^{[-10]}$ , N $H_4$$^{+}$, and EC in the gasoline vehicle and EC, OC, C $l^{[-10]}$ , and S $O_4$$^{2-}$ in the diesel vehicle. The main components were S $O_4$$^{2-}$, S N $H_4$$^{+}$, and EC in the industrial source using bunker C oil as fuel, C $l^{[-10]}$ , N $H_4$$^{+}$, Fe, and OC in the municipal incinerator source, and Si, Al, S $O_4$$^{2-}$, and OC in the coal -fired power plant source. In the case of biomass burning, OC, EC, and C $l^{[-10]}$ were mainly emitted. The main components in marine were C $l^{[-10]}$ , N $a^{+}$, and S $O_4$$^{2-}$.EX> 2-/.

An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission (연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Chang-Boke;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

Scientometric Analysis for Biodiesel (바이오디젤 학술 정보분석)

  • Noh, Kyung-Ran;Kil, Sang-Cheol;Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.593-602
    • /
    • 2013
  • Biodiesel is an important new alternative transportation fuel and it can be produced by chemically reacting a fat or oil with an alcohol, in the presence of a catalyst. The product of the reaction is a mixture of methyl esters, which are known as biodiesel, and glycerol, which is a high value co-product. The process is known as transesterification. Biodiesel can be used neat and when used as a pure fuel it is known as BD100. However, it is often blended with petroleum-based diesel fuel and when this is done the blend is designated BD5 or BD20(BD20 is a blend of 20% biodiesel and 80% petroleum diesel fuel). Adherence to a quality standard is essential for proper performance of the fuel in the engine and will be necessary for widespread use of biodiesel. In this study, we analyzed 4,144 papers of biodiesel by category, country, institution, keyword etc. from 2001 to 2013 years.

Synthesis of Biodiesel Using Supercritical Fluid (초임계유체를 이용한 바이오디젤연료의 제조기술)

  • Lee, Youn-Woo;Song, Eun-Seok;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.171-179
    • /
    • 2005
  • Biodiesel is synthesized by transesterification of vegetable or animal oils with alcohols. Since it has similar characteristic with diesel fuel, it can be used as a fuel by mixing with diesel fuel. Moreover, it is advantageous that biodiesel can reduce air pollution emitted from fuel combustion and is produced from sustainable energy, biomass. Recently, many researchers have investigated biodiesel synthesis using supercritical methanol since it is economical due to shorter reaction time and simple separation/purification process, compared with conventional alkali- or acid-catalyzed process. By the development of biodiesel production process from waste edible oil using supercritical methanol, it can be expected to utilize potential energy resources, reduce carbon dioxide emission, and improve environmental conditions.

  • PDF

Study on Fuel Economy Characteristics by Cumulative Distance of Vehicle (차량 누적거리에 의한 연비 특성 연구)

  • Lim, Jae-Hyuk;Kim, Ki-Ho;Lee, Min-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-61
    • /
    • 2017
  • The vehicle label fuel economy is used as an energy management indicator nationwide. It induces technology development of automobile manufacturers and plays a role of providing information when purchasing a consumer vehicle. However, consumers who purchase a new vehicle continued to complain that the label fuel economy is different from the mandatory fuel economy rate. The domestic fuel economy measurement method is the same as the North American measurement method. The results of the two test modes (urban (FTP-75 mode), highway (HWFET mode)) are calculated in five test modes reflecting various environmental conditions and driving patterns 5-cycle correction formula is used which is equivalent to the fuel efficiency value. In this study, to solve the consumers' curiosity about the fuel economy of new vehicle, we use domestic fuel economy measurement method to measure the new car condition within 150 km of driving distance and the cumulative driving distance condition of domestic label fuel economy test vehicle. A comparative evaluation of fuel economy was carried out for a durability vehicle of $6,500{\pm}1,000km$. A result, mean value of the fuel economy of the four gasoline vehicles increased by 2.7 % in the city center mode and by 2.5 % in the highway mode in the durable vehicle compared new vehicle. And in the case of the diesel vehicle it increased by 2.5 % and 3.9 % respectively. The harmful exhaust gas emitted from the vehicle also resulted in more emissions of both gasoline and diesel vehicles in new vehicles. It is considered that the increase of the frictional force of the vehicle driving system and the lubricating oil system would have an effect on the reduction of the fuel economy of the new vehicle, and it was found that the fuel economy and the exhaust gas were improved by proper cumulative distance (domesticate) to the new vehicle.

Physicochemical Characteristics of CDPF according to Ash a Cleaning agent (Ash 세정제에 따른 CDPF의 물리화학적 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the physicochemical properties according to ash cleaning agents of CDPF for Diesel Engines. Penetrating agents with strong penetration into ash and a surfactant component to mix water and oil were prepared properly. The cleaning characteristics of S1 sample were good. Washcoat loss rate of S1 sample was lower by about 2.2% because of less KOH component and lower Na2SiO3 content. Washcoat loss rate of S4 sample with an added KOH and Na2SiO3 components by penetration agents was increased by about 13%. In terms of less than about 13% of CDPF's washcoat loss rate, it was able to reduce the harmful gas components.

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji (마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구)

  • Jung, Tae Yong;Hyun, Jung Hee;Lee, Seul;Huh, Minkyung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.