• Title/Summary/Keyword: Diesel fuel

Search Result 1,737, Processing Time 0.025 seconds

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(I) (Basic Performance) (디젤기관의 대체연료 이용에 관한 연구 (I) (기본성능))

  • 오영택;정규조;촌산정
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.61-68
    • /
    • 1988
  • This paper reports the basic performance of a naturally aspirated DI diesel engine which is used widely in industry and agriculture when vegetable oils are used as fuel substitutes. In this paper, the properties of vegetable oils as diesel fuel were investigated and the load-performance of diesel engine when vegetable oils were used, as tested compared against diesel fuel. The general objective of this investigation is to realize an efficient, clean, and low carbon deposit combustion of the vegetable oils in diesel engines, showing their feasibility as diesel fuel substitutes. The results of this experiment were as follows; (1) Compared with diesel fuel, the droplet size of vegetable oil is very large. (2) Compared with diesel fuel, rapeseed oil, palm oil, and their blend fuels offered lower smoke, lower NOx, ower engine noise, and high thermal efficiency in a D.I. diesel engine However, there were carbon deposit and piston ring sticking problems with long-term operation. (3) For ethanol-rapeseed oil blends, a 10-20% of ethanol content is recommended to enable lower BSHC and less smoke without a remarkable increase in engine noise compared with pure rapeseed oil. (4) A 10% oxygen content in the vegetable oils is contributed to reduced smoke emission.

  • PDF

An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature (저온 바이오디젤 연료의 연소특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Lee, Jung-Sub;Park, Young-Joon;Kim, Duk-Sang;Lee, Young-Chul;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

Simultaneous Reduction of Smoke and NOx with Oxygenated Fuel(DMC) and Cooled EGR method in Diesel Engine (디젤기관에서 함산소연료(DMC)와 Cooled EGR방법에 의한 매연과 NOx의 동시저감)

  • Oh, Y.T.;Choi, S.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for direct injection diesel engine. It is tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has four kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate have been investigated. Dimethyl carbonate(DMC) contains oxygen component 53.3% in itself, and it is a kind of effective oxygenated fuel of carbonate group that the smoke emission of DMC is reduced remarkably in comparison with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and EGR method.

  • PDF

Combustion and Emission Characteristics of Biodiesel Fuel in a Common Rail Diesel Engines (커먼레일 디젤엔진을 이용한 바이오디젤 연료의 연소 및 배출가스 특성)

  • Zhang, Yue-Qiu;Wang, Jianxin;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.252-258
    • /
    • 2009
  • Engine bench tests has been done on a common-rail diesel engine with bio-diesel fuel to study effects of B100 and B20 on output power, fuel consumption and emissions. Test results show that B100 and B20 could reduce PM, HC, CO emission and smoke, but power decrease, fuel consumption increase and NOx increase obviously, B100 reduce PM and DS with $50%{\sim}70%$ and $80%{\sim}85%$ compared with diesel fuel, while B20 reduce PM and DS with $25%{\sim}35%$ and $30%{\sim}40%$. NOx of B100 and B20 increase $5%{\sim}20%$ compare to diesel.

An Experimental Study on Exhaust Emission Characteristics by Various Oxygenated Additives in Diesel Engine (디젤기관에서 다종 함산소연료 첨가에 의한 배기배출물 특성에 관한 실험적 연구)

  • 오영택;최승훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.101-110
    • /
    • 2002
  • In this paper, the effects of oxygen component in blended fuel on the exhaust emissions have been investigated far direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for th? commercial diesel fuel and oxygenated blended fuels which have three kinds of fuels and various mixed rates. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbons(C$_1$∼ C$\_$6/) in exhaust gases using gas chromatography to seek the reason far remarkable reduction of smoke emission on various oxygenated fuels. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether), MTBE(methyl tart-butyl ether) and EGBE(ethylene glycol mono-n-butyl ether). The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with commercial diesel fuel.

Experimental Study of Diluted Engine Oil Characteristics by Diesel Fuel (경유가 혼입된 엔진오일의 특성에 관한 실험적 연구)

  • Kim Han Goo;Park Tae Sik;Kim Chung Kyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.233-236
    • /
    • 2004
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oil by diesel fuel and its effects on engine components. Especially, engine oil was made to have $15\%$ fuel content. To predict existing diesel fuel content in engine oil after test was used the viscosity calibration curve. About $54\%$ percent of diesel fuel in diluted engine oil was distillated by various paths related to reciprocating motion of piston and the rest diesel fuel plays an important role for decreasing engine oil viscosity. Test results show that lowered engine ell viscosity by diesel fuel dilution become a reason of increasing engine elements wear, Therefore, this caused the quantity of blow-by gas to increase and main gallery pressure to decrease.

  • PDF

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for IDI Diesel Engine (간접분사식 디젤기관에서 바이오디젤연료의 연소 특성)

  • 유경현;윤용진;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.72-78
    • /
    • 2003
  • Recently, lots of researchers have been attracted to develope various alternative fuels and to use renewable fuels as a solution of environmental problems from automobile. The use of biodiesel fuel is an effective way of substituting diesel fuel in the long nun. It is a domestically produced, renewable fuel that can be manufactured from vegetable oils, used vegetable oils, or animal fats. In this study, the usability of biodiesel fuel derived from rice ban oil, one of the oxygenated fuels as an alternative fuel for diesel engines was investigated in IDI diesel engine. Emissions were characterized with neat biodiesel fuel and with a blend of biodiesel fuel and conventional diesel fuel. Since the biodiesel fuel includes oxygen of about 11%, it could influence the combustion process strongly. So, the use of biodiesel fuel resulted in lower emissions of carbon monoxide and smoke emissions with some increase in emissions of oxides of nitrogen. It is concluded that biodiesel fuel can be utilized effectively as a renewable fuel for IDI diesel engine.

Characteristics of High Pressure Bio-diesel Fuel Spray (바이오 디젤 연료의 고압 분무 특성)

  • Hong, Chang-Ho;Choi, Wook;Choi, Byung-Chul;Lee, Gi-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.