• Title/Summary/Keyword: Diesel consumption

Search Result 460, Processing Time 0.03 seconds

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

A Study on the Performance Analysis of Diesel Engine Supercharged by Exhaust Gas Thrbine (배기가스 터빈과급 디젤기관의 성능해석에 관한 연구)

  • 안진근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.421-429
    • /
    • 1997
  • This study is theoretically examined the influences on the performance of diesel engine super¬charged by exhaust gas turbine with the change of excess air factor, admission ratio, total efficien¬cy of turbine and compressor, scavenging pressure ratio, and scavenging temperature. In this study, all calculations are carried out by computer, and the theoretical engine performance is com¬pared with the actual engine performance which is offered from engine manufacturer. Following results are acquired by this study. The mean effective pressure is increased with decrease of excess air factor or increase of scavenging pressure ratio. As the admission ratio or total efficiency of tur¬bine is increased, the mean effective pressure is increased but the specific fuel consumption is decreased. Mean calculation error compared with the actual engine performance is under 5 per¬cents, therefore, this calculation method can be used in the design of diesel engine.

  • PDF

A Study on the Effect of Fuel Injection System on D. I. Diesel Engine (직접분사식 디젤기관의 성능에 미치는 연료 분사계의 영향에 관한 연구)

  • 윤천한;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe, and injection timing in the fuel injection system. We have obtained the results that the fuel consumption ratio is reduced and NOx concentration is increased as the smaller diameter of injection nozz1e hole, the smaller diameter of injection pipe, and more advanced injection timing. They show that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

A Study on Spray Behaviors with Variation of Nozzle Diameter in the Diesel Combustion Chamber (분사 노즐 분공경에 따른 디젤 엔진 연소실내 분무 거동에 관한 연구)

  • 차경세;정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.18-27
    • /
    • 2000
  • The spray models incorporated into the GTT code were tested for free spray, spray in swirling flows and the sprays impinging on a flat wall. And the validity of the models has been confirmed by comparing the calculated results with the experimental data. Using this code, the spray behavior in the diesel combustion chamber have been numerically analyzed for variation of nozzle diameter. Also, the effects of nozzle diameter in diesel combustion was investigated experimentally by measuring the performance in a D.I engine. This study provides the information for the spray characteristics and emissions with variation of nozzle diameter. As a result, it has shown that decreasing nozzle diameter resulted in improving smoke and specific fuel consumption in a middle speed range.

  • PDF

Experimental Study on Combustion and Emission Characteristics of Diesel Engine with Hydrogen Application (수소를 첨가한 디젤엔진의 연소 및 배기특성에 관한 실험적 연구)

  • Oh, Jungmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.203-209
    • /
    • 2017
  • The International maritime organization(IMO), in an effort to slow down the global warming, proposes reduction in ship's speed as a way to lower the rate emissions from ships. In addition, since ship's fuel cost have been increased, the shipping volumes, fuel-saving technology are being required urgently. Therefore, in this present study, a method of reducing the fuel cost that can improve the performance of the diesel engine was tried by introducing a predetermined amount (0.1~0.3% of the mass amount of fuel used) of hydrogen fuel additive. The experimental conditions of the test engine were 1500rpm and torque BMEP-10b ar. The engine performances (power output, fuel consumption rate, p-max, exhaust temperature) were compared before and after addition of hydrogen fuel additives. This experimental study confirmed reducing at least 2% fuel consumption and 2.19% NOx emission.

A Study on the Characteristics of DPF Regeneration Process of Peugeot 406 Vehicle Engine (Peugeot 406차량 엔진의 DPF 재생과정 특성 분석)

  • Kim, Chang-Il;Baek, Choong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.96-102
    • /
    • 2004
  • The diesel particulate filter(DPF) is effective for particulate removal from diesel engine under a variety of conditions, and then the regeneration strategies is very important in the aspects of engine fuel consumption and engine durability. This paper addresses the changes of Peugeot 406 vehicle engine parameters(fuel injection timing, period, rail pressure, emissions exhaust temperature so on) during DPF regeneration. additionally, checked the soot loading mass with mileage and the change of fuel consumption and performance with ash accumulation.

Economical Evaluation of a LNG Dual Fuel Vehicle Converted from 12L Class Diesel Engine (12리터급 경유엔진을 개조한 LNG혼소 화물자동차의 경제성 분석)

  • Han, Jeong-Ok;Chae, Jung-Min;Lee, Jung-Sung;Hong, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • It was measured engine power, specific fuel consumption and exhaust emissions to analyze fuel economy between LNG dual fuel vehicle and base diesel one. The tested LNG dual fuel engine is converted from diesel engine having 12 liter heavy duty class. The power of LNG dual fuel engine is 5% lower than diesel one and the engine efficiency is also lower than diesel case. However the exhaust emission of diesel engine such as PM, NOx, CO and $CO_2$ showed higher than that of LNG duel fuel case except NMHC component. And economical analysis were carried out two cases for an aspect of fuel economy and environmental benefit. As a result, LNG dual fuel vehicle gives some economic benefit to whom both business party and public side respectively though considering the subsidy and price discount for diesel.

Effects of the Fuel Injection Timing on the Combustion Characteristics in CRDI Diesel Engine (CRDI 디젤엔진의 연료분사기기가 연소특성에 미치는 영향)

  • Kim, J.S.;Kim, K.H.;Lee, H.S.;Lim, S.W.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.10-15
    • /
    • 2011
  • This paper describes the engine performance and combustion characteristics of a CRDI diesel engine, operated by electronically controlled diesel fuel injector with variable injection timing. This experiment focused on fuel injection timing and pressure about combustion characteristics of CRDI diesel engine. EGR was excepted because it would be furtherly analyzed with additional experiments. The experiment was conducted under the circumstance of engine torque for 4, 8, 12 and 16 kgf-m and fuel injection timing for $15^{\circ}$, $10^{\circ}$ and $5^{\circ}$ BTDC, at the engine speed of 1100, 1400, 1700 and 2000 rpm. Fuel injection was controlled to retard or advance initiation of the injection event by electronically controlled fuel injection unit injector on the personal computer. When fuel was injected into the cylinders of a CRDI diesel engine it would go through ignition delay before starting of combustion. Therefore, fuel injection timing of CRDI diesel engine had a significant effect upon performance and combustion characteristics. Depending on the injection timing the fuel consumption rate following the rotational speed and torque was 3~78 g/psh (1.7~30.6%). The range of fuel injection timing that resulted in low fuel consumption overall was BTDC 15-10 degrees.

Development of ECO Driving Meter System for Diesel Locomotives (디젤기관차 연료사용량 측정장치 개발)

  • Park, Tae-Gi;Lee, Eul-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2357-2364
    • /
    • 2011
  • Diesel locomotive operates the generator with the power from the diesel engine, and it consists of the typical serial-hybrid system which operates the train wheels by converting its generated electric energy into the torque of DC (or AC) motor. However, the technology of locomotives is only focused on trains' controlling power generation mechanism. Hence, it is a current issue that the efficiency of its engine and its generator is relatively lower than that of auto vehicles'. Particularly, since there are no proper equipment to measure the amount of fuel which is essentially necessary for the efficient use of fuel, it is not easy to confirm the instant amount of fuel use as well as the exact average fuel consumption per an hour. Due to those difficulties, it is urgent to develop the device that measures the fuel consumption. Plus, this use of the developed measuring device allows the various and useful analysis relating to the fuel consumption, and this could lead to establishing the efficient driving pattern regarding to fuel saving. This device consists of two flux (fuel level) measuring censors, MCU for calculating the measured values, the information recorder for saving measured values, and the display device for indicating the fuel amount consumed during driving.

  • PDF

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.