• Title/Summary/Keyword: Diesel combustion

Search Result 969, Processing Time 0.023 seconds

The Combustion Characteristics of Diesel Engine by the Water Injection through the Intake Port (I) (흡기관내로의 물 분사에 의한 디젤기관의 연소특성 (I))

  • Ryu, Kyung-Hyun;Yun, Yoong-Jin;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1756-1762
    • /
    • 2002
  • To effectively meet current regulations on the exhaust emissions of diesel engine required to control the deterioration of air pollution in the whole world, this study is to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in IDI diesel engine. A method fur supplying water through the air intake system to reduce the exhaust emissions has been considered with other methods such as water introduction in the form of water-in-fuel emulsion or water injection directly into the combustion chamber, but it has not been studied about the effects of water on the combustion concepts and the characteristics of exhaust emissions in detail until now. In this study, the formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water play a role as a heat sink during evaporating in the combustion chamber, but the smoke was slightly increased by increasing water amount.

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

Development of the Optimization Analysis Technology for the Combustion System of a HSDI Diesel Engine (HSDI 디젤엔진의 연소계 최적화 해석기술 개발)

  • Lee Je-Hyung;Lee Joon-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.153-158
    • /
    • 2006
  • To optimize the combustion system in a HSDI diesel engine, a new analysis technology was developed. The in-cylinder 3-D combustion analysis was carried out by the modified KIVA-3V, and the spray characteristics for the high pressure injection system were analyzed by HYDSIM. The combustion design parameters were optimized by coupling the KIVA-3V and the iSIGHT. The optimization procedure consists of 3 steps. The $1^{st}$ step is the sampling method by the Design of Experiment(DOE), the $2^{nd}$ step is the approximation using the Neural Network method, and the $3^{rd}$ step is the optimization using the Genetic Algorithm. The developed procedures have been approved as very effective and reliable, and the computational results agree well with the experimental data. The analysis results show that the optimized combustion system in a HSDI diesel engine is capable of reducing NOx and Soot emissions simultaneously keeping a same level of the fuel consumption(BSFC).

A Study on the Comparison of the Combustion Characteristics between a Small HSDI and an IDI Diesel Engine by Advanced One-zone Heat Release Analysis (개선된 단일영역 열발생량 계산법을 사용한 소형 HSDI와 IDI엔진의 연소특성 비교에 관한 연구)

  • Lee, Suk-Young;Jeong, Ku-Seop;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.46-53
    • /
    • 2004
  • Heat release analysis is a very important method for understanding the combustion phenomena inside an engine cylinder. In this study, one-zone heat release analysis was used with the measured cylinder pressures of a HSDI(high speed direct injection) and IDI(indirect injection) diesel engines, Those have benefits of simple equation, fast speed, reliability. The objective of the study is to compare the combustion characteristics between a HSDI and an IDI. The result shoes that the maximum heat release rate of a HSDI is higher than that of an IDI because of long ignition delay period. The heat release curve of an IDI is more linear than that of a HSDI, thus is similiar to that of a SI engine. The combustion efficiency of a HSDI is higher than that of an IDI because of the smaller heat transfer loss of a HSDI. There is a suggestion here that an IDI engine has broad heat transfer area which include two combustion chambers, the connection passage of combustion chambers, etc.

A Study on Characteristics of Combustion with Pilot Injection in a Marine Diesel Engine (선박용 디젤 엔진에서 Pilot 분사에 대한 연소 특성 연구)

  • Lee, Byoung-Hwa;Bae, Myung-Jik;Han, Dong-Sik;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3007-3012
    • /
    • 2008
  • Multidimensional simulation has been carried out to be clear the role of initial combustion in a marine diesel engines on reduction of NOx and soot emissions by different pilot injection condition. Pilot injection can shorten the ignition delay, thus it reduces the premixed combustion phase. Since most NOx is formed during premixed combustion, pilot injections is one of reliable strategies to reduce the NOx. The formation of NOx consists of that formed by pilot injection and that formed by main injection. The result explains that 25-3-75 among the pilot injection conditions is effective to reduce the NOx, due to optimal combination pilot injection with main injection. The purpose of this study is to explain the characteristics of combustion with pilot injection of the marine diesel engine on reduction of exhaust emissions by examining the combustion process in a cylinder and to explore the formation mechanism of NOx between pilot injection and main injection.

  • PDF

Effect of Reentrant Type Bowl Geometry on Combustion Characteristics in Diesel Engine -Effect of Aspect Ratio(Bowl Diameter/Bowl Depth)- (리엔트런트형 연소실 형상이 디젤기관의 연소특성에 미치는 영향 -연소실 형상비(Bowl직경/Bowl깊이)의 효과-)

  • Kwon, J.B.;Kim, H.S.;Kwon, I.K.;Oh, K.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.54-62
    • /
    • 1996
  • Effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.1.diesel engine. The main factor was the aspect ratio (Bowl Diameter/Bowl Depth) of bowl of combustion chamber, and the measured data include the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber. Experimental results indicate that the effect of dc/H and nozzle protrusion are relatively small and there exists an optimum dc/H according to the combustion conditions. It is also found that the smoke emission is quite sensitive the overall combustion time where the 90 percentage of the combustion heat is released. The smoke mission increases by shortening the 90% combustion time while it decreases by delaying the 90% combustion time.

  • PDF

SNCR Application to Diesel Engine DeNOx under Combustion-driven Flow Reactor Conditions

  • Nam, Chang-Mo;Gibbs, Bernard M.
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.769-778
    • /
    • 2012
  • Diesel DeNOx experiments using the SNCR process were performed by directly injecting NH3 into a simulated engine cylinder (966 $cm^3$) for which a diesel fuelled combustion-driven flow reactor was designed by simulating diesel engine geometry, temperature profiles, aerodynamics and combustion products. A wide range of air/fuel mixtures (A/F=20~45) were combusted for oxidizing diesel flue gas conditions where an initial NOx levels were 250~900 ppm and molar ratios (${\beta}=NH_3/NOx$) ranged from 0.5~2.0 for NOx reduction tests. Effective NOx reduction occurred over a temperature range of 1100~1350 K at cylinder injections where about 34% NOx reduction was achieved with ${\beta}$=1.5 and cylinder cooling at optimum flow conditions. The effects of simulated engine cylinder and exhaust parts, initial NOx levels, molar ratios and engine speeds on NOx reduction potential are discussed following temperature gradients and diesel engine environments. A staged injection by $NH_3$ and diesel fuel additive is tested for further NOx reduction, and more discussed for practical implication.

Effects of the fuel injection system on combustion in a diesel engine (디젤기관의 연소에 미치는 분사계의 영향)

  • Kwon, S. I.;Kim, W.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF

Comparisons of Low Temperature Combustion Characteristics between Diesel and Biodiesel According to EGR control (EGR 제어를 통한 디젤 및 바이오디젤의 저온연소 특성 비교)

  • Lee, Yong-Gyu;Jang, Jae-Hoon;Lee, Sun-Youp;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • Due to the oxygen contents in biodiesel, application of the fuel to compression ignition engines has significant advantages in terms of lowering PM formation in the combustion chamber. In recent days, considerable studies have been performed to extend the low temperature combustion regime in diesel engines by applying biodiesel fuel. In this work, low temperature combustion characteristics of biodiesel blends in dilution controlled regime were investigated at a fixed engine operating condition in a single cylinder diesel engine, and the comparisons of engine performances and emission characteristics between biodiesel and conventional diesel fuel were carried out. Results show that low temperature combustion can be achieved at $O_2$ concentration of around 7~8% for both biodiesel and diesel fuels. Especially, by use of biodiesel, noticeable reduction (maximum 50% of smoke was observed at low and middle loads compared to conventional diesel fuel. In addition, THC(total hydrocarbon) and CO(Carbon monoxide) emissions decreased by substantial amounts for biodiesel fuel. Results also indicate that even though about 10% loss of engine power as well as 14% increase of fuel consumption rate was observed due to lower LHV(lower heating value) of biodiesel, thermal efficiencies for biodiesel fuel were slightly elevated because of power recovery phenomenon.

A Study on the Combustion of Fish Oil in a Diesel Engine (Exhaust Emission, Endurance Test) (디젤기관의 어유 연소에 관한 연구(배기에미션, 내구시험))

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.77-82
    • /
    • 1999
  • This study was conducted on the properties of exhaust emissions of diesel oil and fish oil blended with diesel oils using a direct injection diesel engine at different loads, and on the conditions of carbon deposits of diesel oil and 40% blend oil in the combustion chamber after 20 hours operation at $\frac{1]{2}$ load. The properties of exhaust emissions by fish oil blended with diesel oils showed no significant difference with diesel oil. However, soot emissions decreased, increasing the ratio of fish oil. Carbon deposits by fish oil blended with diesel oils were high level compared with diesel oil, which might be overcome by preheating of fuel oil and operating conditions.

  • PDF