• Title/Summary/Keyword: Diesel Injector

Search Result 193, Processing Time 0.022 seconds

A Study on the Atomization Characteristic of a Gasoline Direct Injector (가솔린 직접 분사식 인젝터의 미립화 특성에 관한 연구)

  • 김봉규;이기형;이창식;홍진성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.65-71
    • /
    • 1999
  • Recently new engine system is being required to cope with intensive emission restriction . For this reason, GDI(Gasoline direct injection) engine system which can satisfy both as good fuel economy as diesel engine and the performance to surpass PFI gasoline engine is being development . Since fuel injection system plays a significant role in GDI engine performance, the investigation of the spray characteristics injected from GDI injector above all is indispensable for GDI system development. In this study , spray developing shape was visualized using laser sheet with Nd : YAG laser and atomization characteristics was analyzed by measuring velocities and droplet size with PDA. Utilizing these results , the basic design factor of GDI injector can be offered.

  • PDF

Effect of Induced Voltage on Spray Characteristics of Piezo Actuated Diesel Injector (인가전압이 디젤 피에조 인젝터의 분무 특성에 미치는 영향)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • A piezo-driven injector was applied with a purpose to evaluate the effect of induced voltage on spray characteristics. For this, injection rate, macroscopic imaging, ambient gas entrainment and particle sizing were carried out. It was shown that initial slope of injection rate was steeper as induced voltage increased, while slope of injection rate became mostly constant with fully opened needle. From macroscopoic imaging, longer spray tip penetration was produced with higher induced voltage. Moreover, wider spray angle was detected in the early stage of spray development, when higher induced voltage was applied. Ambient air entrainment rate was increased and particle size was reduced with higher induced voltage.

INVESTIGATION OF SHORT INJECTIONS USING STANDARD AND MODIFIED COMMON RAIL INJECTORS

  • Ficarella, A.;Giuffrida, A.;Lanzafame, R.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2007
  • The control of the fuel to be introduced into the combustion chamber under idling and low-load conditions is known to be a problem in Diesel engines, owing to the relatively small fraction of the full-load fuel needed under light loads. Thus, particular attention should be paid to the behavior of the injector with reference to short injection events. This work presents the results of an experimental campaign carried out with two different types of common rail injectors, a standard injector and a modified one. The latter, coming from a simple modification realized in a standard injector, exhibits linear behavior between injected fuel and solenoid energizing time in the field of short injections. A direct comparison of the two injection behaviors suggests a possible way to better control short or pilot injections.

A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part I : Design of Stratified Injection System and Combustion Characteristics of Stratified Injection) (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제1보 : 층상분사장치의 설계 및 층상분사 연소특성))

  • Kang, B.M.;Kim, J.Y.;Lee, S.B.;Lee, T.W.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.28-34
    • /
    • 2000
  • To reduce the soot and NOx simultaneously, a new system of stratified injection is developed. This system discharges stratified diesel-methanol in a D. I. Diesel Engine. Nozzle and delivery valve of conventional injection system were remodeled to inject diesel and methanol from one injector sequently. The quantity of diesel and methanol was controled precisely by micrometers mounted on the injection control lack. The real injection ratio of dual fuel was measured by volumetric ratio. We could confirm the capabilities that soot and NOx simultaneously were reduced by diesel-methanol stratified injection from the results of in-cylinder pressure data obtained from combustion experiment by stratified injection, heat release rate and mass fraction bumed.

  • PDF

Combustion Optimization of Diesel 2.0 Liter Class Engine with 8-hole Injector Nozzle (8홀 노즐을 적용한 2리터 급 디젤 엔진 연소 최적화)

  • Kwon, Soon-Hyuk;Kim, Min-Su;Choi, Min-Seon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.73-79
    • /
    • 2008
  • Atomization speed of diesel fuel injected from 8-hole nozzle is faster than that of 7-hole nozzle because the hole diameter of 8-hole nozzle is smaller than that of 7-hole nozzle. But both insufficient distance between the fuel sprays and short penetration of injected sprays through 8-hole nozzle hole cause many harmful effects on combustion. In this study, we installed the 8-hole injectors to diesel 2.0 liter class engine, and optimized in-cylinder swirl and penetration via selecting and matching proper cylinder head and combustion bowl. Through this process, we found out the performance and emission potential of 8-hole nozzle installed engine are better than those of 7-hole nozzle installed one.

Experimental Investigation on DeNOx Performance according to the Urea-SCR System Control at Various Operating Conditions for Diesel Engines (디젤엔진의 운전조건 변화 및 Urea-SCR 시스템 제어에 따른 DeNOx 성능에 대한 실험적 연구)

  • Han, Jung-Won;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • Recently, as the current and future emission regulations go stringent, the research of NOx reduction has become a subject of increasing interest and attention in diesel engine. Selective Catalytic Reduction (SCR) is one of the effective technology to reduce NOx emission from diesel engine. Especially, Urea-SCR that uses urea as a reductant is becoming increasingly popular as a cost effective way of reducing NOx emissions from heavy duty vehicles. In this research, we designed urea injector and DCU (Dosing Control Unit) specially developed for controlling the Urea-SCR process onboard vehicles. As passenger and commercial diesel engine experiment, we grasped characteristics of NOx emission and SCR catalyst temperature level in advance. As a result, highest NOx emission level was shown in condition of low engine speed and high load. On the other hand, SCR catalyst temperature was highest at high engine speed and load. On the basis of these result, we conducted the NOx reduction test at steady engine operating conditions using the urea injector and DCU. It was shown that 74% NOx conversion efficiency on the average and 97% NOx conversion efficiency was obtained at high SCR catalyst temperature.

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

Effect of Fuel Nozzle Configuration on the Reduction of NOx Emission in Medium-speed Marine Diesel Engine (연료분사 노즐 형상이 선박용 중형 디젤 엔진의 NOx에 미치는 영향 연구)

  • Yoon, Wook-Hyeon;Kim, Byong-Seok;Ryu, Sung-Hyup;Kim, Ki-Doo;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-14
    • /
    • 2005
  • Multi-dimensional combustion analysis and experiment has been carried out to investigate the effects of the injector nozzle hole diameter and number on the NOx formation and fuel consumption in HYUNDAI HiMSEN engine. The behavior of spray and combustion phenomena in diesel engine was examined by FIRE code. Wave breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation. Wallfilm model suggested by Mundo, et al. and auto-ignition model suggested by Theobald and Cheng were adopted to investigate the spray-wall interaction characteristics and ignition delay. The information of spray angle and spray tip penetration length was extracted from fuel spray visualization experiment and the fuel injection rate profile was extracted from fuel injection system experiment as an input and verification data for the combustion analysis. Next, the nine different nozzle configurations were simulated to evaluate the effect of injector hole diameter and number on the NOx formation and fuel consumption.

  • PDF

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF