• 제목/요약/키워드: Diesel Injection

검색결과 954건 처리시간 0.036초

DPF 재생을 위한 연료 후분사 전략에 대한 연구 (Research on Post Injection for Diesel Particulate Filter Regeneration)

  • 최민후;윤성준;박성욱
    • 한국분무공학회지
    • /
    • 제22권2호
    • /
    • pp.87-95
    • /
    • 2017
  • Recently, as the interest in environmental issues have increased around the world, the regulation on vehicle exhaust have been tightened in each country. To satisfy such tightened exhaust regulation, automotive manufactures are forced to equipped Diesel Particulate Filter (DPF) at Diesel vehicles. If DPF is used for a long time, DPF regeneration should be performed. The objective of this study is to research on post injection for DPF regeneration. The result of the study was that it was desired that retarding post injection timing, lower load of engine and smaller the amount of main fuel injection, for DPF regeneration. Oil dilution was tended to increase as load was lower, amount of post injection was increased, and post injection timing was retarded.

초고압 경유-물 혼합연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Diesel-Water Emulsion with Ultra High Pressure)

  • 정대용;이종태
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2003
  • Spray characteristics on diesel- water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure. Spray Patterns were visualized under various water content and injection pressures. Spray tip penetration was increased and spray angle decreased in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure.

  • PDF

FUTURE GASOLINE AND DIESEL ENGINES - REVIEW

  • Monaghan, M.L.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.1-8
    • /
    • 2000
  • This paper reviews the main drivers forcing change and progress in powertrains for passenger cars in the coming years. The environmental drivers of omissions and CO2 will force better technical performance, but customer demand for increased choice will force change in the basic engine design and provide opportunities for alternate configurations of powertrain. Gasoline engines will embody refinements of valve train actuations as well as developments in combustion, especially direct injection and possibly a lean booated form of direct injection. Nevertheless, the conventional, port injected engine will continue to be the dominant engine for some years to come. The high speed direct injection diesel will very soon supplant its indirect injection predecessor completely. It will take an increasing share of the total powertrain market as improved specific power and refinement make it even more attractive to the customer. Car manufacturers will provide diesel models to satisfy this customer demand as well as using the efficiency of the diesel to enable them to meet their fleet CO2 commitments. Both gasoline and diesel engines will see an increasing degree of electrification and partial hybridisation as efficient flywheel mounted electrical devices become available.

  • PDF

디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과 (Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine)

  • 국상훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 NOx와 Soot 동시 저감에 관한 연구 (제2보 : 층상분사 연소특성 및 배기 특성) (A Study on the Simultaneous Reduction of NOx and Soot with Diesel-Methanol Stratified Injection System in a Diesel Engine (Part II : Combustion and Exhaust Characteristics of Stratified Injection))

  • 강병무;이태원;정성식;하종률
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 2002
  • This paper is study on simultaneous reduction of NOx and soot for direct injection diesel engine using high and low cetane fuels. The stratified injection system was applied for diesel engine to use high and low cetane fuel. In this study, diesel fuel was used as high cetane fuels, methanol was used as low cetane fuels. Some parts of the injection system, ie. Nozzle holder. delivery vale, was remodeled to inject dual fuel sequentially from one injector. The leak injection quantity ratio of dual fuel was certificated by volumetric ratio at injection quantity experiment. According as concentration of low cetane fuel was varied, combustion experiment was performed using Toroidal and Complex chamber. Also, exhaust gas and fuel consumption were measured at the same time. Simultaneous reduction of NOx and soot was achieved at complex chamber regardless of concentration of low cetane fuel. However, according as concentration of low cetane fuel was increased, THC and CO was increased.

  • PDF

증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구 (Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition)

  • 조원규;박영수;배충식;유준;김영호
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

3중분사가 HSDI 디젤엔진의 성능과 배기에 미치는 영향 (The Effect of Triple Injection on Engine Performance and Emissions in a HSDI Diesel Engine)

  • 최욱;박철웅;국상훈;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.40-57
    • /
    • 2004
  • The effects of triple (pilot, main and after) injection on combustion and emission characteristics in a HSDI (High-Speed Direct Injection) diesel engine were investigated using a single-cylinder optical diesel engine equipped with a common-rail injection system. The pilot injection affected the spray and combustion evolution of the following main injection. It was found that the pilot injection reduced the ignition delay, which led to lowered NOx (Nitric Oxides) level, and increased IMEP (Indicated Mean Effective Pressure) due to slow combustion pace during an expansion stroke. The after-injection was shown to be effective in reducing PM (Particulate Matter) even when a small amount of fuel was added. The results suggest that a proper combination of individual injection strategy could bring about a good synergetic effect on engine performance and emission.

승용차 디젤엔진의 연료 다단 분사가 연소 안정 및 배출물 특성에 미치는 영향 (The Effect of Multiple Injections on the Stability of Combustion and Emissions Characteristic in a Passenger Car Diesel Engine)

  • 노현구;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 2007
  • This paper described the effect of the multiple injections on the stability of combustion and emission characteristics in a direct injection diesel engine at various operating conditions. In order to investigate the influence of multiple injections in a diesel engine, the fuel injection timing was varied one main injection and two pilot injections at various conditions. The experimental apparatus consisted of DI diesel engine with four cylinders, EC dynamometer, multi-stage injection control system, and exhaust emissions analyzer. The combustion and emission characteristics were analyzed for the main, pilot-main injection, pilot-pilot-main injection strategies. It is revealed that the combustion pressure was smoothly near the top dead center and the coefficient of variations is reduced due to the effect of pilot injection. Also, $NO_x$ emissions are dramatically decreased with pilot injection because the decrease of rate of heat release. However, the soot is increased at early pilot injection and main injection.

선박용 디젤 엔진에서 Pilot 분사에 대한 연소 특성 연구 (A Study on Characteristics of Combustion with Pilot Injection in a Marine Diesel Engine)

  • 이병화;배명직;한동식;전충환;장영준;송주헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3007-3012
    • /
    • 2008
  • Multidimensional simulation has been carried out to be clear the role of initial combustion in a marine diesel engines on reduction of NOx and soot emissions by different pilot injection condition. Pilot injection can shorten the ignition delay, thus it reduces the premixed combustion phase. Since most NOx is formed during premixed combustion, pilot injections is one of reliable strategies to reduce the NOx. The formation of NOx consists of that formed by pilot injection and that formed by main injection. The result explains that 25-3-75 among the pilot injection conditions is effective to reduce the NOx, due to optimal combination pilot injection with main injection. The purpose of this study is to explain the characteristics of combustion with pilot injection of the marine diesel engine on reduction of exhaust emissions by examining the combustion process in a cylinder and to explore the formation mechanism of NOx between pilot injection and main injection.

  • PDF

디젤엔진에서 Common-rail 시스템의 분사방법에 따른 기관성능 및 연소특성에 관한 실험적 연구 (Engine Performance and Combustion Characteristics on The Variation of Injection Characteristics in Diesel Engine with Common Rail System)

  • 백두성;오상기;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.52-57
    • /
    • 2003
  • Common rail injection system is flexible in injection timing, injection duration and pressure in engine. Many researches have reported on the merits in the application of common rail systems. This research investigated on characteristics and performance for single cylinder diesel engine with a common .ail injection system by varying major parameters such as injection timing, injection duration and common rail pressure. The injection timing and injection duration were controlled by electronic pulse generated. and common rail pressure were controlled by PCV driver. The 498cc single cylinder diesel engine was used in this experiment. All data for combustion pressure, injection timing and injection duration were recorded by Labview. Furthermore, this test was focused on how to optimize injection conditions.