• Title/Summary/Keyword: Diesel Engines

Search Result 801, Processing Time 0.027 seconds

A study on combustion of blended straight vegetable oil in marine diesel engine cylinders

  • Nguyen, Dai An;Tran, The Nam;Dang, Van Uy
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.813-820
    • /
    • 2015
  • Straight vegetable oil (SVO) is widely recommended as fuel for diesel engines in general and especially for marine diesel engines. However, SVOs used directly as fuel for diesel engines may cause problems for the engines; SVOs blended with diesel oil are a better choice. To widen understanding of the possibility of using blended SVOs as fuel alternatives, this paper presents results of experimental research on the combustion of blended straight vegetable oil in a marine diesel engine's cylinders. Results show that the fuel combustion process have the same curves as in simulations and, in the case of using blended fuels with up to 20% palm oil, the test diesel engine technical parameters such as engine output, exhaust gas temperatures, and specific fuel consumption are very similar to those of diesel oil (DO). Based on these results, marine diesel engines are strong potential applications and particularly recommended for the use of SVO blends.

Vibration Control on the Diesel Power Plant by the Phase Adjustment of Paralled Engines' X-Mode Vibration; (병렬 엔진의 X형 진동 위상 조정에 의한 디젤 발전 플랜트 진동 제어)

  • 이돈출;김의간;전효중
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.701-708
    • /
    • 1996
  • Diesel power plants are frequently used as a power supplier on the island and the isolated places where electric power is required. The heat efficiency of the low speed 2 stroke diesel engines is higher than those of 4 stroke diesel engines or other heat engines and further its mobility and durability is also better than other engines. They can be also easily repaired and maintained. With these advantages, demand for the use of the low speed 2 stroke diesel engine as a power source is increasing. However, there are some disadvantages with these diesel engines such as the bigger vibrating excitation forces generated by higher combustion pressure in cylinder and by the inertia force of the reciprocating parts. Further, engine vibrations are transfered into their adjacent buildings and manufacturing factories and eventually produces local vibrations. In order to reduce X-mode vibration of engine body, several methods have been introduced in the recent researches. In this paper, accordingly, a new vibrationcontrol method applying a synchrophaser and a top bracing between two diesel engines is adopted in order to reduce these structural vibrations of diesel power plant. It was experimentally verified that the structural vibrations were greatly reduced by the phase adjustment for the 6th order X-mode vibration with the synchrophaser and the top bracing.

  • PDF

Combustion Characteristics and Durability of Diesel Engines Burning BDF 20 (BDF 20을 사용하는 디젤기관들의 연소 및 내구특성)

  • Ryu, Kyung-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.18-28
    • /
    • 2007
  • Three diesel engines were fueled with BDF 20, a blend of 80% diesel fuel and 20% biodiesel fuel by volume, and run in excess of 200 h to evaluate their combustion characteristics and durability. The engines used for this study were a 4-cylinder 2476-cc displacement IDI diesel engine(Engine 1), a 4-cylinder l732-cc displacement IDI diesel engine(Engine 2), and a single cylinder 673-cc displacement DI diesel engine(Engine 3). Engine dynamometer testing was performed on each engine at regularly scheduled intervals to monitor the performance and exhaust emissions, which were sampled at 1h intervals for analysis, The peak combustion pressure with BDF 20 increased in Engines 1 and 3 over that measured when burning pure diesel fuel, but that in Engine 2 remained constant. Combustion parameters, such as the maximum combustion pressure and corresponding crank angle, did not change over the long-term dynamometer testing. The BSFC with BDF 20 in Engine 1 was less than that measured with pure diesel fuel. The amount of smoke produced with BDF 20 was less for all engines ; the greatest reduction was observed for Engine 3. The NOx emissions were lower in the IDI engines than the DI engine. The traditional trade-off between smoke and NOx emissions was maintained for BDF 20 fuel for Engines 1 and 3. There was not a big difference in the $CO_2\;and\;O_2$ emissions for BDF 20, as compared to pure diesel fuel, but more $CO_2$ was exhausted by Engine 1 than by Engines 2 or 3 and less $O_2$ was exhausted by Engine 1 than by Engines 2 or 3. The engine parts remained clean, except for some carbon attached to the area surrounding the nozzle hole of the DI diesel engine.

A study on the use of pure palm oil (biodiesel-DO) as an alternative fuel on the fuel supply system of marine diesel engines

  • Uy, Dang Van
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.685-693
    • /
    • 2013
  • The biodiesel used as an alternative fuel for diesel engines is well- known, however the price of the bio-diesel is still higher than conventional diesel oil (DO) by 10% to 15% depending on a kind of bio-oil and a country producing the bio-diesel. One of idea to reduce the price of bio-diesel is to use the pure bio-oil as fuel for marine diesel engines, because to use the pure bio-oil as fuel without the esteritification process can reduce the price of bio-fuel. At present time, some experts in some countries who have been carrying out experiments on the use of pure bio-oil produced from rape seeds, sunflower seeds... as fuel for marine diesel engines have achieved important results. In recent years, at Vietnam Maritime University we also have been using the pure palm oil and its blended fuel (Palm oil and DO) as fuel for marine diesel engines in laboratory and on board of ships. The blended fuel is a mixing fuel of the pure palm oil and diesel oil with content of pure palm oil by 5%, 10%, 15%, 20% and 35%. In this paper, we would like to present some results from our experiments to investigate the impacts of using the palm oil and its blended fuel on the important technical features of the fuel supply system of marine diesel engines such as the fuel supply amount for one cycle, fuel supplying pressure, ignition delay time and so on. The results from the research will be good fundamental parameters to support proper operation of marine diesel engines using bio-oil and blended fuels as alternative fuel in near future.

Worldwide Emission Regulations for Commercial Vehicle Diesel Engines and Emission Reduction Technologies Trend (각국 Heavy Duty 상용차(버스, 트럭) 탑재 디젤엔진의 배기규제동향과 대응기술 소개)

  • 한제원
    • Journal of the Korean Professional Engineers Association
    • /
    • v.37 no.5
    • /
    • pp.47-50
    • /
    • 2004
  • Diesel engines are the major sources of pollutants in the cities and each country is trying to enforce their emission regulations to reduce the diesel emissions. Expecially Commercial diesel engines have large displacement and they are the major sources of diesel emissions in the cities. This paper introduces the major countries' Diesel Engine Regulations and explains the emission reduction technologies that are currently applied and will be applied in the future.

  • PDF

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

A Modular Simulation Model for Turbocharged Diesel Engines (터보과급기가 부착된 디젤엔진의 모듈화된 시뮬레이션 모델)

  • 강동헌;홍금식;이교일
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.680-688
    • /
    • 1998
  • A modular programming approach for simulation/control of turbocharged diesel engines is investigated. The MATLAB/SIMULINK, which provides easy construction of various control modules and handy retrieval of objects, is adopted as a programming environment. The mathematical models for diesel engines are utilized from the literature. The object-oriented modules, which represent mechanical parts or theoretical algorithms for engines, are easily transferable to other application programs in the same environment. The simulation model is applied to a 4 strokes diesel engine. Details of the block diagrams of example modules are demonstrated. Finally, a PI controller and a sliding mode controller are applied to the simulator constructed for a typical turbocharged diesel engine.

  • PDF

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

Characteristics of Nano-particles Exhausted from Heavy-duty Diesel Vehicles with Low Emission Technology (대형경유차 저공해기술 적용에 따른 나노입자 배출특성)

  • Lim Cheol-Soo;Yoo Jung-Ho;Eom Myoung-Do;Hwang Jin-Woo;Kim Ye-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.225-236
    • /
    • 2004
  • Diesel engines which emit a lot of PM and NOx have been known as a main air polluter. Especially, diesel particulate matters (OPM) including black smoke are hazardous air pollutants to human health and environment. The nations retaining advanced engine technologies have reinforced emission regulations. To meet these regulations diesel engine manufacturers have developed low-emission diesel engines, aftertreatment equipments, alternative fuel technologies and so on. In this study, particle number concentrations characteristics according to particle size and engine driving conditions were analyzed when these low-emission technologies were applied. There was a tendency of increasing particle number concentrations from heavy-duty diesel engines with increasing engine rpm and load rate. In the cases of COPF (Catalytic Diesel Particulate Filter), CNG (Compressed Natural Gas) engine and ULSD (Ultra Low Sulfur Diesel) more than 99% of particle number concentration were removed.

A Study on Optimal Combustion Conditions with a Design and Manufacture of the Long-Stroke Slow Speed 4 Cycle Diesel Engine (장-행정 저속 4 사이클 디젤기관의 제작 및 최적 연소조건에 관한 연구)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.551-558
    • /
    • 2004
  • Recently, fuel prices have been continually raised in diesel engine. Such a change in the fuel price influences enormously the development trend of marine diesel engines for slow speed, In other words, the focus was shifted from large diameter and high speed to low fuel consumption. Accordingly, more efforts are being made for engine manufacturing and development to develop highly efficient engines. In this study. a single cylinder 4 stroke cycle DI slow speed diesel engine was designed and manufactured, a 4 stroke cycle was configured and basic performances were evaluated. The results are as follows. The optimal fuel injection timing had the lowest value when specific fuel consumption was in BTDC 8~$10^{\circ}$, a little more delayed compared to high speed diesel engines. Cycle variation of engines showed about 5% difference at full loads. This is a significantly small value compared to the cycle variation in which stable operation is possible, showing the high stability of engine operation is good. The torque and brake thermal efficiency of engine increased with an increase of engine 250-450 rpm. but fuel consumption ratio increased from the 450 rpm zone and thermal efficiency abruptly decreased. Mechanical efficiency was maximally 70% at a 400 rpm that was lower than normal engines according to the increase of mechanical frictional loss for cross head part. The purpose of this study was to get more practical engines by comparing the above results with those of slow speed 2 stroke cycle diesel engines.