• Title/Summary/Keyword: Diesel Engine Dynamometer

Search Result 95, Processing Time 0.026 seconds

A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine (500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

A Study on the Exhaust Gas After Treatment for Small Ship (소형선박용 배기가스 후처리장치에 관한 연구)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.76-81
    • /
    • 2017
  • In this research, to cope with the exhaust being reviewed to establish legal regulations for domestic small vessels, a basic experiment on an exhaust emissions post-treatment system was conducted to construct the design data required for securing a localized technology. The data was secured based on the arithmetic mean calculated through setting the engine load to 25%, 50%, and 75% and conducting five. A 2800-cc turbo charger diesel-type engine was used in the experiment, and an engine dynamometer was used in the conducted tests. As a result, NOx was reduced by approximately 20% and PM was reduced by approximately 97%. Although the results indicated no significant changes to CO in test mode-1, it was greatly reduced as it transitioned into the next phase.

Test Method for Engine Performance in Compression Ignition Engine (압축 착화기관의 엔진 성능 시험방법)

  • Kwon, Soon-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.295-299
    • /
    • 2002
  • Specific fuel consumption or specific power output characteristics of an internal combustion engine are likely, in conventional applications, the most important operating criteria. In this work, the test method for the engine performance was introduced in a compression ignition(diesel) engine.

  • PDF

A Study on NOx Reduction for a Small Marine Diesel Engine (소형 선박 디젤엔진의 질소산화물 저감에 관한 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.79-84
    • /
    • 2011
  • Air pollutants from a small marine diesel engine are increasing and the IMO(International Marine Organization) regulation asked for its reduction. In this study, NOx reduction technologies such as improvement of various cooling systems are applied to the small marine diesel engine. The various cooling systems are a intercooler, a heat exchanger for engine coolant, and an exhaust manifold by water cooling. These systems are tested on an engine dynamometer and a exhaust gas analyzer by a marine diesel engine test regulation. Test results are shows that the small marine engine are satisfied the IMO NOx regulations; Tire II.

Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 직접분사식 디젤기관의 내구특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • To evaluate the durability of direct injection diesel engine using biodiesel fuel, a small D. I. diesel engine was operated on a blend(BDF 20) of 20% biodiesel fuel and 80% diesel fuel for 200 hours. Engine dynamometer test was performed at a load of 90% and a speed of 1900 rpm to monitor the engine performance and exhaust emissions. Engine performance parameters and exhaust emissions were sampled at 1 hour interval for analysis. The combustion maximum pressure and the crank angle at this maximum pressure as a combustion variation factor were considered to study the combustion characteristics of BDF 20 in diesel engine during durability test. As the results, the standard deviations and errors of combustion variation factors on BDF 20 were very little and combustion characteristics were very stable during the durability test. BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with special increase of nitrogen oxides compared to diesel fuel. There was no also unusual change in engine oil composition from using BDF 20. Most of engine parts were clean and showed little wear, but soots were detected around the hole of fuel injector when BDF 20 was used in direct injection diesel engine for 200 hours.

Characteristics of Durability and Emission with Biodiesel Fuel (5%) in a Common Rail Direct Injection Diesel Engine at SEOUL-10 Mode (SEOUL-10 모드에서 바이오디젤유 (5%) 적용시 커먼레일 디젤기관의 배기배출물 및 내구 특성)

  • Choi, S.H.;Oh, Y.I.;Kim, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.97-101
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 2.6%), smoke (below 6.2%), NOx (below 2%) and durability characteristics in spite of operation of 150 hours run with BDF 5%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.36%

Effect of Ultrasonic Energy in the Engine using Diesel Fuel Blended Rape-seed Oil (유채혼합유를 사용하는 기관에서 초음파에너지의 영향)

  • Kwon, K.R.;Ko, K.N.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.5-10
    • /
    • 2005
  • The effect of ultrasonic energy for diesel fuel and blend oil has been revealed in this paper. The experimental setup consisted of a high speed diesel engine with 4 cylinder, dynamometer and ultrasonic fuel feeding system. Ultrasonic energy was added to diesel fuel and blend oil, which is a blend of diesel fuel and rape-seed oil. As engine speed was changed, engine torque and power, brake specific fuel consumption and thermal efficiency were measured in detail. As the results, by adding ultrasonic energy to diesel fuel and blend oil, the engine performance was improved in range of the experiment. The effect of improvement on brake specific fuel consumption and thermal efficiency for blend oil is higher than that for diesel fuel. When ultrasonic energy was added to diesel fuel or blend oil, a rise in engine torque for diesel fuel was higher than that for blend oil, but the effect of ultrasonic energy was small. From these results, it may be desirable to add ultrasonic energy to blend oil for the use of blend oil to diesel engine.

  • PDF

An Experimental Study on the Exhaust pollutant Reduction in Diesel Engine using a Rice-Bran Oil (미강유를 사용한 디젤기관에서의 배기오염물질 저감에 관한 실험적 연구)

  • 이준서
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 1998
  • Exhaust emissions in diesel engine are affected by fuel properties but the reason for this is not clear. Especially the recent strong interest in using low-grade fuel demands extensibe investigation in order to clarify the exhaust emissions. Bio-Diesel oil has a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. The use of bio-oils in diesel engines has received considerable atten-tion to the forseeable depletion of world oil supplies. So bio-diesel oil has been attracted with attentions for alternative and clean energy source. The purpose of this paper is to evaluate the fea-sibility of the rice-bran oil for alternative fuel in a diesel engine with rgard to exhaust emis-sions.

  • PDF

A Comparative Study on Engine Performance and Exhaust Emission Characteristics of Response Power 150HP & 240HP Turbocharged Marine Diesel Engine (대응출력 150마력 및 240마력 터보차저 선박용 디젤기관의 동력성능 및 배출특성 비교에 관한 연구)

  • Kim, Tae-Hyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped turbocharger different from response power to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more $NO_X$ and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.

A Study on Engine Performance and Exhaust Emission Characteristics of Response Power 150HP Turbocharged Diesel engine (대응출력 150마력 터보차저 디젤기관의 동력성능 및 배출특성에 관한 연구)

  • Kim, Tae-Hyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.100-106
    • /
    • 2012
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped turbocharger to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more NOX and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.