• 제목/요약/키워드: Diesel Engine Dynamometer

검색결과 95건 처리시간 0.025초

소형디젤엔진용 E-EGR 밸브의 개발 및 차량적용에 관한 실험적 연구 (An Experimental Study on the Development & Application of E-EGR Valve for Light Duty Diesel Vehicle)

  • 송창훈;정용일;차경옥
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.203-209
    • /
    • 2002
  • 본 연구에서는 유니크에서 개발된 E-EGR 밸브의 특성을 분석하였으며, 차량적용의 가능성을 평가하였다. 메르세데스 벤츠에서 개발된 배기량 0.8리터급 소형디젤 승용차인 Smart cat가 본 실험에 사용되어졌다. 실험용 차량은 전자식 EGR 밸브가 장착된 3기통의 터보 과급식 차량이다. 테스트벤치에서 EGR 밸브의 성능을 비교 및 분석한 후 차대동력계상에서 EGR map과 CVS-75 시험결과를 통하여 전자식 EGR 밸브의 차량적용 가능성을 여부를 수행하였다.

디젤 하이브리드 차량 개조에 따른 배기 배출물 영향 평가 (Modification of Hybrid Diesel Vehicle and Its Effect on the Exhaust Emissions)

  • 권순호;임종순;이현우;이정훈
    • 한국자동차공학회논문집
    • /
    • 제23권5호
    • /
    • pp.537-544
    • /
    • 2015
  • The effects of the modification of hybrid vehicle components on diesel exhaust emissions were investigated in this study. We examined the changes in exhaust emissions and the fuel consumption (FC) caused by the modification of generator (alternator) and motors. Exhaust emissions such as black carbon (BC), HC, $NO_X$ and $CO_2$ were measured not only in idle state but also on an actual urban road as well as on a chassis dynamometer. BC, $NO_X$ and HC emissions increased by 95%, 27% and 34% respectively when the generator charged the battery in the idle condition. BC and FC decreased in hybrid mode on the actual urban road partly because the motors were used to assist the diesel engine. In addition, the decreases in exhaust emissions and FC were also evident in the hybrid mode when the vehicle was tested on the chassis dynamometer.

차대동력계를 이용한 대형 디젤 차량의 매연 배출 특성 연구 (A Study on the Characteristics of Smoke Emissions from Heavy Duty Diesel Vehicles Using a Chassis Dynamometer)

  • 진광석;이충훈
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.1-10
    • /
    • 2009
  • The characteristics of smoke emissions from diesel heavy duty vehicles which weigh over 5.5 tons was investigated by driving the vehicles with both the Lugdown 3 modes in the chassis dynamometer and tree accelerating mode under no load. The vehicles include commercial vehicles such as bus, microbus, trucks and specialized vehicles, etc. The total numbers of the vehicles tested were 200. The light extinction method was used to measure the smoke emissions from the vehicles tail pipe. The values of the smoke emissions in the tree accelerating mode showed $0{\sim}20%$ band nearly independent of both the mileage and year of production of the tested vehicles, while those in the Lugdown 3 modes showed $0{\sim}99%$ of wide band. The correlation coefficients between the values of the smoke emissions with both the Lugdown 3 modes and the free acceleration mode were 0.12, 0.08, 0.12, respectively. The inspection with Lugdown 3 modes is better one than that with tree acceleration from the point of exact inspection of the diesel vehicles' smoke emission.

분할 분사시기 변화에 따른 직분식 디젤엔진의 연소 특성 (Combustion characteristics of DI diesel engine according to various timings of split injection)

  • 연인모;노현구;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.104-109
    • /
    • 2005
  • This paper describes the effect of the split injection on combustion and emission characteristics in a common rail diesel engine at various operating conditions. The combustion pressures and exhaust emissions such as $NO_x$ and soot were measured at various split injection timings. The experimental apparatus of this study is composed of 4 cylinder engine installed with piezoelectric pressure sensor, EC dynamometer, and exhaust gas analyzer for the measurement of $NO_x$, CO, HC and soot emissions. Results show that the split injection has a great effect on reducing the rapid premixed combustion and $NO_x$ emissions.

  • PDF

건설기계 디젤엔진용 실시간 시뮬레이터 개발 (Development of Real-Time Simulator for a Heavy Duty Diesel Engine)

  • 노영창;박경민;오병걸;고민석;김낙인
    • 대한기계학회논문집A
    • /
    • 제39권2호
    • /
    • pp.203-209
    • /
    • 2015
  • 건설기계 산업에서 배기 및 연비 규제를 만족하기 위하여 엔진 시스템이 점차 전자제어화 되고 있으며, 이를 제어하기 위한 EMS(Engine Management System)의 복잡도 또한 증가하고 있다. 본 연구에서는 EMS function 개발 시, 비용 및 개발기간의 단축을 위한 HiLS(Hardware in the Loop Simulation) 시스템을 개발하였다. HiLS 에 내장된 엔진 모델은 크게 Air, Fuel, Torque 및 동력계 모델로 구성되어있고 실시간 엔진 모사를 위하여 Mean value modeling 방법을 적용하였다. 이 연구를 통하여 개발한 HiLS 시스템은 EGR(Exhaust Gas Recirculation) 시스템과 Turbocharger 가 장착된 건설기계용 디젤엔진을 이용하여 정확성을 검증하였고, 테스트 결과 실 엔진 대비 90% 이상의 정확도를 얻었다.

흡기포트 선회비 변경에 따른 유동특성 및 엔진성능에 관한 연구 (A Study on the Flow Characteristics and Engine Performance with Swirl Ratio Variance of Intake Port)

  • 윤준규;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.899-905
    • /
    • 2000
  • The characteristics of air flow and engine performance with swirl ratio variance of intake port In a turbocharged DI diesel engine was studied in this paper. The intake port flow is important factor which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The swirl ratio for ports was modified by hand-working and measured by impulse swirl meter. For the effects on performance and emission, the brake torque and brake specific fuel consumption were measured by engine dynamometer and NOx, smoke were measured by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased. And as the swirl ratio is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by optimizing the main parameters; the swirl ratio of intake port, injection timing and compression ratio.

  • PDF

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

선박용 고속 디젤엔진에 적용한 디젤미립자 필터의 측정방법에 따른 입자상물질 저감효율 비교 연구 (Comparison of removal efficiency of diesel particulate filter with different measurement methods in a high-speed marine diesel engine)

  • 이익성;고동균;문건필;남연우;김신한;오영택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.362-367
    • /
    • 2017
  • 본 연구에서는 입자상물질 저감을 위해 개발한 디젤미립자 필터를 선박용 고속 디젤엔진에 적용하여 측정방법에 따른 저감효율을 비교 분석하였다. 시험에 사용된 엔진은 최고출력 403 kW의 4행정 기계식 선박용 고속 디젤엔진이며, 선박 엔진의 부하와 회전속도 제어를 위해 AC 동력계를 사용하였다. 선박 엔진 시험주기인 E3 cycle의 네 운전조건에서 저감효율을 측정하였으며, 측정방법으로는 입자상물질 및 soot의 저감특성을 살펴보기 위해 분류희석 방법과 광흡수법이 적용된 계측기를 각각 이용하였다. 디젤미립자 필터 적용에 따른 저감효율 측정 결과, 엔진허용 배압을 충족함과 동시에 입자상물질의 경우 76 ~ 91 %, soot(${\approx}$블랙카본)은 90 %이상 확인할 수 있었다. 이 결과로부터, 선박용 디젤엔진에서 배출되는 입자상물질 및 soot 저감기술로 디젤미립자 필터 적용 가능성을 확인할 수 있었다. 또한, 측정방법별 저감효율이 상이한 결과로부터 측정방법의 단일화 필요성을 확인할 수 있었다.

여지반사식과 광투과식 매연측정기의 매연도 상관계수에 관한 연구 (A Study of the Opacity Correlation Factor between the Filtration Type and Light Extinction Type Diesel Smoke Meters)

  • 김영주;박경석
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.146-152
    • /
    • 2007
  • Recently, The air pollution problems become hot issues as the production of the diesel automotive increases. The ministry of environment has enforced a precise inspection law to decrease the vehicle emission. In this circumstances, the smoke measurement is somewhat complicated by the use of the different type smoke meters. Although the paper filtration type opacimeter has been used for measuring smoke widely but currently the light extinction type is being used for precise inspection law. These two type opacimeters are different in their measuring principles on each other. So, for the time being the regulation standards can be confused by these two type opacimeters. In this article, The correlation factor between these two type opacimeters is studied by using engine dynamometer and vehicle test. The result of the dynamometer test shows the light extinction type is more sensitive than the filtration type by 1.47 times. But the relation factor by the vehicle test achieved 1.37 value, which is lower than that of the dynamometer test. In the future study the more precise research is needed to estimate the relation factor on vehicle test.

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.