• Title/Summary/Keyword: Diesel Cycle Engine

Search Result 206, Processing Time 0.024 seconds

Study of LNG Reliquefaction Process in LNG Carriers (LNG 선박에서 천연가스 재액화공정의 재액화량에 관한 연구)

  • Ko, Byoung-Seok;Kim, Bum-Su;Lee, Heon-Seok;Kang, Yun-Jin;Kim, Min-Seop;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • In the past vaporized gases from a carrier were burned or used for fuel. Due to the movement of bigger LNG carriers and using diesel engine, it is limited that ways of deposing vaporizes gases from the carrier by the act of environment. For getting over the problem, a reliquefaction process is considered. Even though the reliquefaction process was created to three generation process, it has been researched and developed to optimize the process. Basically the reliquefaction process is compartmentalized into Reverse Brayton Cycle System and Claude Cycle System. This research is focused on the reliquefaction efficiency with the systems and changing equipments arrangement by using HYSYS. The result could be use for a design of a reliquefaction process.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

Design and Performance Evaluation of Spring-viscous Damper for Torsional Vibration (스프링-점성형 비틀림 진동댐퍼 설계 및 성능 평가에 관한 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.;Kim, H.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1192-1198
    • /
    • 2011
  • Design routines of a torsional spring-viscous damper for a 1800 kW four cycle diesel engine-generator system are described. Modal techniques for system normalization and optimal equations for damper design are used to obtain proper design parameters of the damper. A prototype damper is manufactured according to the described design process and its two design parameters, stiffness and damping, are evaluated experimentally by torsional actuator test and free decay test. Experimentally obtained values of stiffness and damping coefficients showed good agreements with the designed values of the prototype damper.

A Mathematical Model on the Absorption Rate of Carbon-Dioxide in Mixed Gas During the Transient State of Rotary Type Absorbers (과도상태의 회전형 흡수기에서 혼합기체 중 이산화탄소 흡수량 계산 모델)

  • Paik, Hyun-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1729-1737
    • /
    • 2002
  • A mathematical model for the prediction of carbon-dioxide absorption rate during the transient state of rotary type absorber is developed. The rotary type absorber operates using a fast rotating porous structure and clean water. The model for the transient state rotary type absorbers is based on the steady state model of packed tower absorber. The paper manipulates the operating data of an arbitrary quasi-steady state condition of rotary type absorber for the determination of the coefficients involved in the model developed. The prediction accuracy is evaluated from the measured data of rotary type absorber operated under fast transient state. The measured data include the mole fraction of carbon dioxide in mixed gas and the pressure of absorber. The relative error in carbon dioxide prediction is estimated to be 20% at maximum. The model is successfully applied for the prediction of the behavior of a closed cycle diesel engine.

Exhaust Emissions Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle (CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 배출가스 특성)

  • Cho, Seungwan;Kim, Seonghoon;Kwon, Seokjoo;Park, Sungwook;Jeon, Chunghwan;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • Recently rise in oil prices feet the burden on not only diesel vehicle driver but also LPG vehicle driver, and get interested in various way to reduce fuel costs. In this study discuss on exhaust emissions characteristics on driving cycle mode and ignition advance condition change of CNG/LPLI Bi-Fuel vehicle. Experimental test was performed by changing the conditions of fuel (LPG/CNG), spark advance (Base, $10^{\circ}CA$, $15^{\circ}CA$), and driving mode (FTP-75, HWFET, and NEDC). In case of CO emission, in the order of CNG Base, CNG S/A10, S/A15 condition are average reduced -21%, -35%, -29% respectively compared to LPG fuel. The active emission reduction from the initial engine start, spark retard is likely to be beneficial in catalyst warm-up and improve combustion stability rather than spark advance.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

The Research for effect of lubricant oil aging on environmental performance (자동차 윤활유의 성상 및 열화가 환경성에 미치는 영향 연구)

  • Kim, Jeong-Hwan;Kim, Ki-Ho;Ha, Jong-Han;Jin, Dong-Young;Myung, Cha-Lee;Jang, Jin-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.12-24
    • /
    • 2017
  • The main purpose of this research is for the investigation on the impact of engine oil aging on PM and DPF. It is widely known that lubricant specifications and consumption from an ICE have significantly influenced on the regulated and unregulated harmful emissions as the engine operating conditions. Considering DPF clogging phenomena with lubricant-derived soot/ash components, simulated aging mode for the DPF was newly designed for engine dynamometer testing. PM/ash accumulation cycle were developed in reflecting real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for the ash accumulation. The test duration for DPF aging reached around 100hrs with high- and low-SAPS engine oils, respectively. Using high SAPs engine oil made more PM/ash accumulation compared with low SAPs engine oils and it could accelerate fouling of EGR in engine. Fouling of EGR made effects on more harmful exhaust gases emissions. The test results on engine lubricant under engines operating conditions will deliver for the establishment of regulated and unregulated toxic emissions policy, lubricant quality standard.

Study on the Performance Factors of Two Stage Turbo-Charging System and Maximization of the Miller Cycle (2단 과급시스템의 성능 인자 영향과 밀러 효과 극대화에 관한 연구)

  • Beak, Hyun-min;Seo, Jung-hoon;Lee, Won-ju;Lee, Ji-woong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.953-960
    • /
    • 2019
  • The Miller cycle is a diesel engine that has been developed in recent years that it can reduce NOx and improve fuel consumption by reducing the compression ratio through intake valve closing (IVC) time control. The Miller cycle can be divided into the early Miller method of closing the intake valve before the bottom dead center (BDC) and the late Miller method of closing the intake valve after the BDC. At low speeds, the late Miller method is advantageous as it can increase the volumetric efficiency; while at medium and high speeds, the early Miller method is advantageous because of the high internal temperature reduction effect due to the expansion of the intake air during the piston lowering from IVC to BDC. Therefore, in consideration of the ef ects of the early and late Miller methods, it is necessary to adopt the most suitable Miller method for the operating conditions. In this study, a two-stage turbo charge system was applied to four-stroke engines and the process of enhancing the Miller effect through a reduction of the intake and exhaust valve overlap as well as the valve change adjustment mechanism were considered. As a result, the ef ects of fuel consumption and Tmax reduction were confirmed by adopting the Miller cycle with a two-stage supercharge, a reduction of valve overlap, and an increase of suction valve lift.

Determination of an LNT Regeneration Condition Based on a NOx Storage Fraction in a 2.2L Direct Injection Diesel Engine (2.2L 디젤 엔진에서 NOx 흡장률 기반 LNT 재생 조건 결정)

  • Chun, Bongsu;Lee, Jungwoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.345-351
    • /
    • 2016
  • This study was carried out to determine an optimal lean $NO_x$ trap (LNT) regeneration condition based on a $NO_x$ storage fraction. The LNT regeneration was performed by an in-cylinder post fuel injection method. A $NO_x$ storage fraction is defined by the ratio of current cumulated $NO_x$ amount in the LNT to the $NO_x$ storage capacity: 0 means empty and 1 fully loaded. In this study five engine operating conditions were chosen to represent the New European Driving Cycle. With various $NO_x$ storage fractions each engine operating condition, the LNT regeneration was executed and then $NO_x$ conversion efficiency, additional fuel consumption, CO and THC slip, peak catalyst temperature were measured. The results showed that there exist an optimal condition to regenerate the LNT, eg. 1500 rpm 6 bar BMEP with below 0.7 $NO_x$ storage fraction in this experimental constraint.

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.