• 제목/요약/키워드: Dielectric-Barrier-Discharge Plasma

검색결과 204건 처리시간 0.032초

알루미나 반응기에서의 이산화탄소의 무성방전 특성 (Silent Discharge Characteristics of $CO_2$ for Alumina Imbedded-Discharge Reacted)

  • 조문수;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1061-1064
    • /
    • 2001
  • Deep Interests have been paid on the application of non-thermal plasma technique to solve the environmental pollution problems. $CO_2$, is one of the severe pollutants which cause the acid rain and global warming. In this study, in order to improve the conversion efficiency of $CO_2$, the streamer corona discharge plasma and barrier discharge plasma reactors were made, and the conversion characteristics of $CO_2$by the corona discharge plasma and some discharge characteristics of these discharge chambers are studied experimentally.

  • PDF

수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거 (Removal of Rhodamine B Dye Using a Water Plasma Process)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제37권3호
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상 (Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation)

  • 박영식
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.

Particle-in-Cell Simulation for the Control of Electron Energy Probability & Electron temperature of Dielectric Barrier Discharges at Atmospheric Pressure

  • Lee, Jung-Yel;Song, In-Cheol;Lee, Ho-Jun;Lee, Hae-June
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.528-528
    • /
    • 2012
  • Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 13.56 MHz to 162.72 MHz and with a gap distance of 80 micrometers. The variation of frequency, in the change in the electron energy probability function (EEPF). Through the relation between the ion trajectories and the frequency, results in the change of EEPFs is achievable with the turning point of frequency mode. Therefore, it is possible to categorize the efficient operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals.

  • PDF

유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석 (Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma)

  • 이수민;오일영;홍용준;육종관
    • 한국전자파학회논문지
    • /
    • 제24권3호
    • /
    • pp.324-330
    • /
    • 2013
  • 본 논문은 대기압 환경에서 발생하는 유전체 장벽 방전(dielectric barrier discharge: DBD) 플라즈마의 전자파 산란 특성을 측정하였다. 본 논문에서는 기본적인 DBD 플라즈마 발생기 구조를 병렬로 연결하여 넓은 면적의 플라즈마 발생기를 제작하였고, 14 kV, 4 kHz의 고전압 발생장치를 이용해 플라즈마가 발생하는 것을 확인하였다. 두 개의 혼 안테나와 벡터 네트워크 분석기를 이용해 S-parameter의 비교를 통해 전자파 산란 특성을 측정하였다. 전방 산란의 경우 제작된 플라즈마 발생기의 구조적 특성으로 인해 안테나의 편파에 따라 다른 결과 값을 얻었다. 편파가 수평일 때 최대 2 dB의 산란파 감쇠 특성을 확인할 수 있었다. 또한, 편파가 수평일 경우, 플라즈마 발생기 뒤에 PEC를 설치한 후 후방 산란 특성을 측정하였다. 그 결과, 5 GHz에서 안테나 관찰 각도가 $40^{\circ}C$, $60^{\circ}C$일 때 최대 2 dB 산란파 감쇠 특성을 얻었다.

Antifungal Activity of Non-thermal Dielectric Barrier Discharge Plasma Against Clinical Isolates of Dermatophytes

  • Ali, Anser;Hong, Young June;Lee, SeungHyun;Choi, Eun Ha;Park, Bong Joo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.260-260
    • /
    • 2014
  • Dermatophytes can invade in keratinized tissues and cause dermatophytosis [1] that rank among the most widespread and common infectious diseases world-wide. Although several systemically and topically administered drugs with activities against these fungi are available, still complete eradication of some of these infections, is difficult and relapses and remissions are often observed [2,3]. In addition, some people are allergic to many of the available drugs which add complications even more. Therefore, the search for novel, selective and more effective therapy is always required and it may help the clinicians to choose the correct treatment for their patients. Non-thermal plasmas primarily generate reactive species and recently have emerged as an efficient tool for medical applications including sterilization. In this study, we evaluated the ability of non-thermal dielectric barrier discharge (DBD) plasma for the inactivation of clinical isolates of Trichophyton genera, Trichophyton mentagrophytes (T. mentagrophytes) and Trichophyton rubrum (T. rubrum), which cause infections of nails and skin and, are two of the most frequently isolated dermatophytes [4]. Our results showed that DBD plasma has considerable time dependent inactivation potential on both T. mentagrophytes and T. rubrum in-vitro. Furthermore, the mechanisms for plasma based T. mentagrophytes and T. rubrum inactivation and planning for in-vivo future studies will be discussed.

  • PDF

비열 유전체장벽방전 플라즈마 발생기의 풍량에 따른 결핵균 성장억제 효능 (Effect of Non-thermal Dielectric Barrier Discharge Plasma by Air Volume against Mycobacterium Tuberculosis)

  • 손은순;김용희;백남원;이일영;김은화;박해룡;이종석
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.414-419
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate the inhibitory effect of non-thermal dielectric barrier discharge (DBD) plasma by air volume against Mycobacterium tuberculosis (MTB). Methods: Plasma generators (TB-300, Shinyoung Airtec, Seongnam-si, Korea) were operated in a 2A type biosafety cabinet. The plasma generator was set to a wind flow rate of 14 ($80m^3/h$), 18 ($110m^3/h$), and 22 ($150m^3/h$), and exposure times were set to 0 hours, 3 hours, 6 hours, 9 hours, and 24 hours. Results: The inhibitory effects of plasma at air volume 14 with prolonged exposure time of three hours was 20%, 64% at six hours, 82.3% at nine hours, and 100% after 24 hours exposure. With air volume of 18, the inhibitory effects upon plasma exposure were 36% for three hours, and 100% from 24 hours. Greater air volume resulted in greater inhibition of tuberculosis bacterial growth. In particular, the maximum inhibitory effect (100%) was shown in air volume of 22 ($150m^3/h$) after three hours of plasma exposure. Conclusions: The results showed the correlating inhibitory effects of plasma on the growth of MTB in combination with increasing plasma exposure time and air volume.

Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices

  • Lee, Hyun-Jung;Jung, Samooel;Jung, Hee-Soo;Park, Sang-Hoo;Choe, Won-Ho;Ham, Jun-Sang;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • 제54권3호
    • /
    • pp.191-198
    • /
    • 2012
  • The objective of this study was to evaluate the potential use of a dielectric barrier discharge (DBD) plasma system to improve microbial safety of sliced cheese. The atmospheric pressure plasma (APP) effect on visual appearance and a sensory evaluation were also carried out. The number of Escherichia coli inoculated on cheese slices decreased by 0.09, 0.47, 1.16 and 1.47 log cycles with helium (4 liters/min [lpm]) and 0.05, 0.87, 1.89 and 1.98 log cycles with He/$O_2$ mixture (4 lpm/15 standard cubic centimeters per minute), after being treated with plasma for 1, 5, 10, and 15 min, respectively. Significant reductions were also observed in Staphylococcus aureus inoculated onto cheese slices ranging from 0.05 to 0.45 log cycles with He and from 0.08 to 0.91 log cycles with He/$O_2$-treated samples, respectively. Adding oxygen resulted in a significant increase in inactivation of both pathogens. No visible change in the plasma-treated cheese slices was observed even though the instrumental analysis showed a significant decrease in the $L^*$-value and an increase in the $b^*$-value. The cheese slices were damaged after 10 and 15 min of plasma treatment. In addition, significant reductions in sensory quality including flavor, odor, and acceptability of plasma-treated cheese slices were observed. The results indicate that the DBD plasma system has potential for use in sanitizing food products, although the effect was limited. Further development of the APP system is necessary for industrial use.

산소-플라즈마 방전을 이용한 수중의 페놀 제거 (Phenol Removal Using Oxygen-Plasma Discharge in the Water)

  • 박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.