• Title/Summary/Keyword: Dielectric strength

Search Result 574, Processing Time 0.031 seconds

Impulse Dielectric Breakdown Characteristics due to Network Structure Variation of Epoxy Composites (Epoxy 복합재료의 망목구조 변화에 따른 임펄스 절연파괴 특성)

  • 이덕진;김경환;김명호;손인환;김탁용;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.164-167
    • /
    • 1997
  • A series of interpenetrating polymer networks(IPN) based on Epoxy, MA and PU were synthesized in order to improve withstand voltage properties of Epoxy resin. Dielectric breakdown characteristics are investigated for six types of specimens. As a result, it was found that impulse voltage dielectric breakdown characteristic of SIN specimen was the most excellent. It was also found that SIN specimens were stronger than anything else in scanning electron microscopy. On the other hand, as a result of consideration of dielectric breakdown strength change according to adding fi1ter, it was confirmed that the decrease of dielectric breakdown strength are controlled slightly by IPN method.

  • PDF

Dielectric properties of EPDM/Carbon black compounds (EPDM/Carbon black 컴파운드의 절연특성)

  • Lee, Chul-Ho;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1432-1435
    • /
    • 1998
  • Influences of carbon black contents on the tracking resistance, tan $\delta$ and dielectric constant volume resistivity and dielectric strength of EPDM compounds before and after a exposure to UV radiation were investigated. Carbon black content up to 1.5 phr have a positive effect to improve the resistance to tracking and erosion, since carbon black diminish the leakage current. Results from the study reveal that both tan $\delta$ and dielectric constant volume resistivity and dielectric strength are unaffected by adding of carbon black up to 2.0 phr and carbon black have a significant effect to suppress the photo-degradation of EPDM compounds.

  • PDF

Surface discharge Characteristics for solid dielectric under non-uniform field (불평등전계 하의 고체절연물 연면방전특성)

  • Park, He-Rie;Lee, Jung-Hwan;Choi, Eun-Hyuck;Park, Sung-Gyu;Kim, Lee-Kook;Kim, Ki-Chae;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.270-272
    • /
    • 2009
  • This paper presents a basic data of the surface discharge characteristics for solid dielectric under non-uniform field in $N_2/O_2$ mixture gas. Used electrodes are needle and plane. Used solid dielectric is expoxy resin. With the variation of the mixture rates of the gas by 80[%]:20[%], 60[%]:40[%] and 40[%]:60[%] in same condition, we can obtain different surface dielectric strength. Increased Pressure and thickness caused increased surface dielectric strength.

  • PDF

Percolation Threshold and Critical Exponent of Dielectric Breakdown Strength of Polyethylene Matrix Composites added Carbon Black (카본블랙 첨가 PMC(Polyethylene Matrix Composites)의 문턱스며들기(Percolation Threshold)와 절연파괴 강도 임계지수)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.477-481
    • /
    • 2011
  • Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-$V_{CB}$) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.

A Study on the Dielectric Breakdown Strength Characteristics of Epoxy-$SiO_2$ Compound Material for Electric Installation (전기설비용 에폭시-$SiO_2$ 복합재료의 절연파괴 특성에 관한 연구)

  • 김재환;박창옥
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 1991
  • In this study the investigation were carried out on short-term breakdown characteristics of the compound material dependent on change of filler quantity, ambient temperature(room temperature~[$190[^{\circ}C$]) and kinds of voltage sources for the compound materials of Bisphenol- A epoxy resins filled with $SiO_2$ particles. As the results, obtained the dielectric breakdown strength generally decrease as increasing the quantity of filler and the distance, spacing of each's particles, decrease as increasing the quantity of filler, when the distance is less than [$7.5\mu\textrm{m}$], dielectric breakdown strength is nearly constant. In the case on AC voltage dielectric strength of filled epoxy resins is stronger than nonfilled epoxy resins on temperature region more than $130[^{\circ}C$].

  • PDF

Dielectric Breakdown Characteristics Depending on The Nano Filler of Epoxy Nano-composites (나노 충진제에 따른 에폭시 나노 컴퍼지트의 절연파괴강도 특성)

  • Park, Tae-Hak;Back, Sung-Hak;Lee, Dong-Gun;Park, Hong-Kyu;Jeong, In-Bum;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.92-92
    • /
    • 2010
  • In this paper, the test is performed on MgO, which is used as a filler in epoxy additives, respectively (0, 1.0, 3.0, 5.0, 7.0, 10 [wt%]) for HVDC(high voltage direct current) submarine cable insulating material to improve electrical properties of epoxy resin in high temperature. The breakdown strength due to increasing amount of filler increased to 5.0 [wt%] by the effects of the Coulomb blockade. However, it is confirmed that strength of dielectric breakdown decreased because the filler functioned as impurities and affected the breakdown when filler additive exceeded by 5.0 [wt%] or more. We have found that the highest dielectric breakdown strength of specimen added 5.0 wt% at $25^{\circ}C$, and is more increased approximately 13.7 [%] than virgin specimen.

  • PDF

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.

Thickness Dependent Temperature Accelerated Dielectric Break-down Strength of On-wafer Low Dielectric Constant Polymer Films

  • Kim, H. K.;Lee, S. W.;F. G. Shi;B. Zhao
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.281-286
    • /
    • 2002
  • The temperature accelerated dielectric breakdown strength of on-wafer low-k dielectric polymer films with thicknesses ranging from 94 nm to 1141 nm is investigated by using the current-voltage characteristic measurements with MIS structures. The temperature dependence of dielectric strength is demonstrated to be Arrhenious for all thicknesses. However, the activation energy is found to be strongly thickness dependent. It follows an exponential relationship rather than being a single value, i.e., the activation energy increase significantly as film thickness increases for the thickness below 500 nm, but it is almost constant for the thickness above 500 nm. This relationship suggests that the change of the activation energy corresponding to different film thickness is closely related to the temperature dependence of the electron trapping/detrapping process in polymer thin films, and is determined by both the trapping rate and the detrapping rate. Thinner films need less energy to form a conduction path compared to thicker films. Hence, it leads to smaller activation energy in thinner films, and the activation energy increases with the increase in film thickness. However, a nearly constant value of the activation energy is achieved above a certain range of film thickness, indicating that the trapping rate and detrapping rate is almost equal and eventually the activation energy approaches the value of bulk material.

Electrical Properties of Large Alumina Ceramics Prepared by Various Processing (제조 공정별 대형 알루미나 세라믹스의 전기적 특성)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Park, Young-Il;Kim, Mi-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • The size of various alumina ceramics used in semiconductor and display industry is required to increase with increase in wafer and panel size. In this research, large alumina ceramics were fabricated by uniaxial pressing, cold isostatic pressing and filter pressing with commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The large alumina ceramics exhibited dense microstructure corresponding to 98.5% of theoretical density and 99.8% of high purity. The impurities and microstructural defects of the alumina were found to influence the resistance and dielectric properties. The volume resistances in these four aluminas were almost the same while the pure alumina was higher value. The dielectric constant, dielectric loss and dielectric strength of aluminas were placed within the range of 10.3~11.5, 0.018~0.036, and 10.1~12.4 kV/mm, respectively.

Effects of Alumina Powder on the Properties of Mica Sheet Impregnated with Silicone Rubber Resin (알루미나 분말의 첨가에 따른 실리콘고무수지 함침 마이카시트의 특성)

  • Park Hyo-Yul;Kang Dong-Pil;Ahn Myeong-Sang;Myung In-Hye
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.561-566
    • /
    • 2005
  • This paper describes electrical resistivity, dielectric strength, thermal conductivity, thermal stability and tensile strength of mica sheet impregnated with silicone rubber resin or silicone rubber resin containing alumina powder. The mica sheet impregnated with silicone rubber resin had higher electrical resistivity, dielectric strength and tensile strength than those of virgin mica sheet. Electrical resistivity of mica sheet impregnated with silicone rubber resin containing alumina increased with increasing the amount of alumina. However, dielectric strength and tensile strength of mica sheet impregnated with silicone rubber resin containing alumina decreased with increasing the amount of alumina. The mica sheet impregnated with silicone rubber resin had lower thermal conductivity than that of virgin mica sheet. However, thermal conductivity of mica sheet impregnated with silicone rubber resin conatining alumina increased with increasing the amount of alumina. In the case of thermal stability, thermal degradation of virgin mica sheet and impregnated mica sheet with silicone rubber resin did not occur up to $1100^{\circ}C$ and $400^{\circ}C$, respectively.