Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.9.477

Percolation Threshold and Critical Exponent of Dielectric Breakdown Strength of Polyethylene Matrix Composites added Carbon Black  

Shin, Soon-Gi (Department of Advanced Materials Engineering, College of Samcheok, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.21, no.9, 2011 , pp. 477-481 More about this Journal
Abstract
Composites of insulating polyethylene and carbon black are widely used in switching elements, conductive paint, and other applications due to the large gap of resistance value. This research addresses the critical exponent of dielectric breakdown strength of polymer matrix composites (PMC) made with carbon black and polyethylene below the percolation threshold (Pt) for the first time. Here, Pt means the volume fraction of carbon black of which the resistance of the PMC is transferred from its sharp decrease to gradual decrease in accordance with the increase of carbon-black-filled content. First, the Pt is determined based on the critical exponents of resistivity and relative permittivity. Although huge cohesive bodies of carbon black are formed in case of being less than the Pt, a percolation path connecting the conducting phases is not formed. The dielectric breakdown strength (Dbs) of the PMC below Pt is measured by using an impulse voltage in the range from 10 kV to 40 kV to avoid the effect of joule heating. Although the observed Dbs data seems to be well fitted to a straight line with a slope of 0.9 on a double logarithm of (Pt-$V_{CB}$) and Dbs, the least squares method gives a slope of 0.97 for the PMC. It has been found that finite carbon-black clusters play an important role in dielectric breakdown.
Keywords
dielectric breakdown; polyethylene; carbon black; composites; percolation threshold;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S. G. Shin, Electron. Mater. Lett., 6(2), 65 (2010).
2 S. G. Shin, Kor. J. Met. Mater., 48(9), 867 (2010) (in Korean).
3 K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Iishikawa, J. Mater. Sci., 17, 1610 (1982).   DOI
4 T. Mizutani, Handbook of Electronic Materials, p. 637- 640, ed. T. Kimura, Asakurasyoten, Tokyo, (2006) (in Japanese).
5 F. Ehrburger-Dolle, J. Lahaye and S. Misono, Carbon, 32(7), 1363 (1994).   DOI   ScienceOn
6 I. Webman, J. Jortner and M. H. Cohen, Phys. Rev. B, 16(6), 2593 (1977).   DOI
7 A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B, 76, 475 (1976).   DOI   ScienceOn
8 T. Ohtsuki and T. Keyes, J. Phys. Math. Gen., 17, L559 (1984).   DOI   ScienceOn
9 L. Niemeyeer, L. Pietronero and H. J. Wiesman, Phys. Rev. Lett., 52(12), 1033 (1985).
10 H. Takayasu, Phys. Rev. Lett., 54(11), 1099 (1985).   DOI   ScienceOn
11 T. Tanamoto and A. Toriumi, Jpn. J. Appl. Phys., 36(3B), 1439 (1997).   DOI
12 P. D. Beale and P. M. Duxbury, Phys. Rev. B, 37(6), 2785 (1988).   DOI   ScienceOn
13 S. G. Shin, Kor. J. Mater. Res., 19(12), 644 (2009) (in Korean).   DOI   ScienceOn
14 S. Nakamura, J. Inst. Electrostat. Jpn., 25(3), 142 (2001) (in Japanese).
15 E. K. Sichel, Carbon Black-polymer Composites, p. 253- 280, ed. E. K. Sichel, Mercel Dekker, New York, USA (1982).
16 N. Probst, Conductivity Imparted by Carbon Black to Composites, p. 273, ed. J. B. Donnet, R. C. Bansel and M. J. Wang, Marcel Dekker, New York, USA (1993).
17 S. G. Shin, Met. Mater. Int., 7(6), 519 (2001).   DOI
18 S. G. Shin, H. J. Lim and J. H. Lee, Kor. J. Mater. Res., 13(11), 732 (2003) (in Korean).   DOI   ScienceOn
19 D. Stauffer and A. Aharony, Introduction to Percolation Theory, p. 123-153, Tayler & Francis, London (1992).
20 S. G. Shin, Kor. J. Mater. Res., 20(5), 271 (2010) (in Korean).   DOI   ScienceOn