• Title/Summary/Keyword: Dielectric response

Search Result 197, Processing Time 0.027 seconds

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

Time Domain Combined Field Integral Equation for Transient Electromagnetic Scattering from Dielectric Body (유전체의 전자기 과도산란 해석을 위한 시간영역 결합 적분방정식)

  • Kim Chung-Soo;An Hyun-Su;Park Jae-Kwon;Jung Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.626-633
    • /
    • 2004
  • In this paper, we present a time domain combined field integral equation (TD-CFIE) formulation to analyze the transient electromagnetic response from three-dimensional dielectric objects. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. A set of the RWG (Rao, Wilton, Glisson) functions Is used for spatial expansion of the equivalent electric and magnetic current densities and a combination of RWG and its orthogonal component is used as spatial testing. We also investigate spatial testing procedures for the TD-CFIE to select the proper testing functions that are derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable enables one to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are presented and compared with the solutions of the frequency domain combined field integral equation (FD-CFIE).

Analysis of Transient Electromagnetic Scattering from Dielectric Objects using Laguerre Polynomials (라게르 함수를 이용한 유전체의 전자파 과도산란 해석)

  • 정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.458-465
    • /
    • 2003
  • In this paper, we analyze the transient electromagnetic response from three-dimensional(3-D) dielectric bodies using a time-domain electric field integral equation formulation. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated as an orthonormal basis function set that is derived from the Laguerre functions. These basis functions are also used as the temporal testing. Numerical results involving equivalent currents and far fields computed by the proposed method are presented.

Nondestructive Inspecting for Multilayer Dielectric Material using Synthetic Aperture Radar (SAR를 이용한 다층 유전체의 비파괴 검사)

  • Kim, Sung-Duck
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.424-427
    • /
    • 2016
  • A microwave NDI(Nondestructive Inspecting) method, based on SAR(Synthetic Aperture Radar) for inspecting such internal flaws or physical demage of FRP(Fiber Reinforced Polymer), is proposed in this paper. When a microwave is incident perpendicularly toward a multilayer dielectric FRP material, it gives a good response for the interfaces or transverse cracks. Interface depths or defect positions can be presented from the reflection waves, as using SAR imagery technique. As a result, it can be shown that such a SAR system can effectively inspect the type, size, or location of flaws within FRP composite material.

Analysis of Transient Electromagnetic Scattering from 3-Dimensional Dielectric Objects by using Time-Domain PMCHW Integral Equation (시간영역 PMCHW 적분식을 이용한 3차원 유전체의 전자파 과도 산란 해석)

  • 정백호;서정훈;한상호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1096-1103
    • /
    • 2003
  • In this paper, we analyze the transient electromagnetic response from three-dimensional(3-D) dielectric bodies using a time-domain PMCHW(Poggio, Miller, Chang, Harrington, Wu) formulation. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent currents are approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. These basis functions are also used as the temporal testing. Numerical results involving equivalent currents and far fields computed by the proposed method are presented.

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

A Review: All Solid-state Electroactive Polymer-based Tunable Lens (고체 전기활성 고분자 기반 가변 렌즈의 연구동향)

  • Shin, Eun-Jae;Ko, Hyun-U;Kim, Sang-Youn
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In this paper, we review papers which report to the all solid-state electroactive polymer-based tunable lens. Since electroactive polymer-based tunable lenses change their focal length by responding to electric stimuli, it can be minimized the size and weight of optical modules. Thus, it has been received attention in the robot, mobile device and display industry. The all solid-state electroactive polymer-based tunable lenses can be classified into two categories depending on the classification of materials: ionic electroactive polymer-based lenses and non-ionic electroactive polymer-based lenses. Most of the ionic electroactive polymer-based tunable lenses are fabricated with ionic polymer-metal composite. So, the ionic electroactive polymer-based tunable lenses can be operated under low electric voltage. But small force, slow recovery time and environmental limitation for operation has been pointed to the disadvantage of the lenses. The non-ionic electroactive polymer-based tunable lenses are classified again into two categories: dielectric polymer-based tunable lenses and polyvinylchloride gel-based tunable lenses. The advantage of the dielectric polymer-based tunable lenses is fast response to electric stimuli. But the essential flexible electrodes degrade performance of the lens. Polyvinylchloride gel-based tunable lens has reported impressive performance without flexible electrodes.

Transient Electromagnetic Scattering from 3-Dimensional Dielectric Objects by Using PMCHW Integral Equation (PMCHW 적분식을 이용한 3차원 유전체의 전자파 과도산란)

  • Seo, Jung-Hoon;Han, Sang-Ho;An, Hyun-Su;Jung, Baek-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.78-81
    • /
    • 2003
  • In this paper, we analyze the transient electromagnetic response from three-dimensional dielectric bodies using a time-domain PMCHW (Poggio, Miller, Chang, Harrington, Wu) formulation. The time-domain unknown coefficients of the equivalent currents are approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. Numerical results computed by the proposed method are presented.

  • PDF

CO Gas Response Characteristic and Electrical Properties of ZnO-TiO$_2$Composite (ZnO-TiO$_2$ 복합체의 전기적 성질과 일산화탄소 감응특성)

  • 김태원;최우성;박춘배;정승우;소병문;백승철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.103-106
    • /
    • 1997
  • The electrical properties and the sensing properties of ZnO-TiO$_2$ composites were investigated by using the complex impedance measurement and voltage-current source and measurement unit. In air, the electrical conductivity of TiO$_2$ added ZnO increase with increasing the content of TiO$_2$ and the relative dielectric constants for 3, 5 and 7mol% TiO$_2$ added ZnO are 7, 13 and 120, respectively. In 3000ppm CO gas, the relative dielectric constants for 3, 5mol% TiO$_2$ added ZnO are 25, 28, respectively.

  • PDF

Electro-optic Characteristic of Homogeneously Aligned Liquid Crystal Display Driven by an Oblique field (경사 전기장 구동에 의한 수평배열 액정 디스플레이의 전기 광학특성 연구)

  • Park, Sang-Hyun;Lee, Ji-Youn;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-86
    • /
    • 2006
  • We have studied electrode-optic characteristics of in-plane switching (IPS) of liquid crystal director driven by an oblique electric field. Because the conventional IPS mode does not have an electrode on top substrate, it shows not only slow response time due to weak electric field but also slow discharging problem when electrostatic field is generated after fabricating the cell. To solve these problems, we have formed additional electrode including dielectric layer in the inner part of the cell on top substrate and studied electrode-optic characteristics of the new device.