• Title/Summary/Keyword: Dielectric resonator

Search Result 296, Processing Time 0.025 seconds

Concentration of Sodium Chloride Solutions Sensing by Using a Near-Field Microwave Microprobe (비접촉 근접장 마이크로파 현미경을 이용한 NaCl 용액의 농도 측정)

  • Kim, Song-Hui;Yoon, Young-Woon;Babajanyan, Arsen;Kim, Jong-Chul;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • We observed the NaCl concentration of solutions using a near-field microwave microprobe(NFMM). Instead of the usual technique, we take advantage of the noncontact evaluation capabilities of a NFMM. A NFMM with a high Q dielectric resonator allows observation of small variations of the permittivity due to changes in the NaCl concentration. The changes of NaCl concentration due to a change of permittivity of the NaCl solution were investigated by measuring the microwave reflection coefficient $S_{11}$ of the resonator. The NaCl sensor consisted of a dielectric resonator coupled to a probe tip at an operating frequency of about f=4 GHz. The change of the NaCl concentration is directly related to the change of the reflection coefficient due to a near field electromagnetic interaction between the probe tip and the NaCl solution. In order to determine the probe selectivity, we measured a mixture solution of NaCl and glucose.

Error Analysis for Microwave Permittivity Measurement using Post Resonator Method (Post Resonator 방법에 의한 마이크로파 유전율 측정에서의 오차 분석)

  • Cho, Mun-Seong;Lim, Donggun;Park, Jae-Hwan;Park, Jae-Gwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2012
  • Errors of relative permittivity calculation caused by the variation of sample aspect ratio (diameter/height) and measuring geometry were analyzed by computer simulation and measurement. Firstly, the $S_{21}$ spectrum of the sample (permittivity 38) was simulated in the post resonator measuring apparatus by HFSS simulation. Then, the relative permittivity was calculated from the $TE_{011}$ mode resonant frequency. The relative permittivity varied by ca. 0.3% with sample aspect ratio variation (D/H=0.8~1.6). The relative permittivity varied by ca. 1~10% when the 1~10% of air-gap was introduced in between the dielectric disk and upper conductor. All the simulation results showed consistent tendency with real measurement.

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

The Design and Implementation of PLDRO(Phase Locked Dielectric Resonator Oscillator) Using Dual Phase Lock Loop Structure (이중 위상고정루프 구조를 갖는 PLDRO 설계 및 제작)

  • Kim Hyun-jin;Kim Yong-Hwan;Min Jun-ki;Yoo Hyeong-soo;Lee Hyeong-kyu;Hong Ui-seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.69-74
    • /
    • 2004
  • In this work, A PLDRO (Phase Locked Dielectric Resonator Oscillator) which can be used for the wireless communication systems fur MMC(Microwave Micro Cell) and ITS wireless communication system is designed. A different approach to the PLDRO structure is applied for phase locking by dual phase lock loop structure. The proposed dual loop PLDRO generates the output power of 0 dBm at 18.7 GHz and has the characteristics of a phase noise of -80 dBc/Hz at 1kHz, -83 dBc/Hz at 10 kHz offset frequency from carrier frequency

  • PDF

Design of Band Pass Filter using the Triple-Mode Resonators (3중모드 공진기를 이용한 대역통과 필터(BPF)의 설계)

  • 황재호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.899-905
    • /
    • 2001
  • This paper presents a triple-mode dielectric resonator far low loss and simple structure filter design. The BPF(Band Pass Filter) was designed using HFSS simulation results an4 fabricated using proposed resonators. The filter (3-stage BPF) has an insertion loss of about 0.9 dB at the center frequency of 1.93 GHz and a 3 dB bandwidth of about 25 MHz. If more complex characteristic is required, slot coupling between resonators can be used. Especially, the proposed BPF can be applied to the next generation mobile communication IMT-2000 system.

  • PDF

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pade Approximation (FDTD법과 Pade 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • 오순수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.396-396
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is $TE_{01{\delta}}$ mode.

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pad Approximation (FDTD 법과 Pad 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • O, Sun-Su;Yun, Jung-Han;Lee, Seong-Mo;Park, Hyo-Dal
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.36-43
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is TE$_{01{\delta}}$ mode.

  • PDF

Design of Linearized VCDRO with Novel PBG Ground Plane and Varactor Circuit (새로운 PBG 접지면과 바랙터 회로를 이용한 선형화된 VCDRO의 설계)

  • 강성민;전종환;구경헌
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents a design of 12㎓ VCBRO(voltage controlled dielectric resonator oscillator) using a novel PBG(photonic band gap) ground plane and a varactor circuit that enhances the frequency linearity of VCO with different bias to varactors. The PBG structures are used for suppressing the second and third harmonics without any filters. To simulate the accurate resonating frequency, a DR coupled with microstrip lines is analysed by FTM(finite element method) simulation, and the results are transformed into scattering parameters to design the VCO. Some measured results are presented to show the usefulness of the proposed techniques.

Design and Fabrication of a 3.2 GHz Low Noise Dielectric Resonator Oscillator using Small-Signal S-Parameter (소신호 산란계수를 이용한 3.2 GHz 저잡음 유전체 공진 발진기의 설계 및 제작)

  • 조인귀;정재호;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.187-195
    • /
    • 1999
  • A series feedback DRO operating at 3.2 GHz applicable to the spectrum analyzer as the second local oscillator, is designed and fabricated. We can obtain a low noise by utilizing the small signal S-parameter of the transistor and adjusting the reflection coefficient from the coupling coefficient between dielectric resonator and microstrip line. The results show that output power is 10.50 dBm, a stable low phase noise is -116 dBc/Hz at a 10 kHz offset frequency and a harmonic characteristic is 19.33 dBc.

  • PDF