• Title/Summary/Keyword: Dielectric resistance

Search Result 330, Processing Time 0.031 seconds

A Study on Design of Mobile Communication Microstrip Patch Antenna using PSO algorithm (PSO 알고리즘을 이용한 이동통신용 마이크로스트립 패치 안테나 설계에 관한 연구)

  • Kim, Myung-Dong;Park, Byeong-Ho;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1796-1803
    • /
    • 2013
  • In this paper, a novel particle swarm optimization method based on IE3D is used to design a mobile communication microstrip patch antenna. The aim of the paper is to design and fabricate an inset fed rectangular microstrip antenna and study the effect of antenna dimensions length (L), width (W) and substrate parameters relative dielectric constant (${\varepsilon}r$), substrate thickness on radiation parameters of band width. PSO algorism was applied to IE3D, low resistance against, band width and advantage, were improved.

A Study on the Formation of Trench Gate for High Power DMOSFET Applications (고 전력 DMOSFET 응용을 위한 트렌치 게이트 형성에 관한 연구)

  • 박훈수;구진근;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.713-717
    • /
    • 2004
  • In this study, the etched trench properties including cross-sectional profile, surface roughness, and crystalline defects were investigated depending on the various silicon etching and additive gases, For the case of HBr$He-O_2SiF_4$ trench etching gas mixtures, the excellent trench profile and minimum defects in the silicon trench were achieved. Due to the residual oxide film grown by the additive oxygen gas, which acts as a protective layer during trench etching, the undercut and defects generation in the trench were suppressed. To improve the electrical characteristics of trench gate, the hydrogen annealing process after trench etching was also adopted. Through the hydrogen annealing, the trench corners might be rounded by the silicon atomic migration at the trench corners having high potential. The rounded trench corner can afford to reduce the gate electric field and grow a uniform gate oxide. As a result, dielectric strength and TDDB characteristics of the hydrogen annealed trench gate oxide were remarkably increased compared to the non-hydrogen annealed one.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

Varition Microstructure for Heat treatment of Thin Films $BaTiO_3$ System ($BaTiO_3$계 세라믹 박막의 열처리에 따른 미세구조변화)

  • Park, Choon-Bae;Song, Min-Jong;Kim, Tae-Wan;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.293-295
    • /
    • 1994
  • Barium Titanate ($BaTiO_3$) is one of the few titanateds which is cubic at room temperature. It has the perovskite structure, high dielectric constant (${\varepsilon}_r=300$) and a small temperature coefficient of resistance due to it's Low transition temperature ($Tc=120^{\circ}c$). PTCR (Positive Temperature Coefficient of Resistivity) thermistor in thin film $BaTiO_3$ system was prepared by using radio frequency (13.56MHz) and BC magnetron sputter equipment. Polycrystalline, and surface structure characteristics of the specimens were measured by X-ray diffraction (D-Max3, Rigaku, Japan), SEM(Scanning Electron Microscopy: M. JSM84 01, Japan), respectively. Temperature at below $600^{\circ}C$, $1000^{\circ}C$ to $700^{\circ}C$, and above $1100^{\circ}C$ for spotted $BaTiO_3$ thin films showed the amorphous, degree of crystal growth, and polycrystalline, respectively.

  • PDF

A study on Improvement of $30{\AA}$ Ultra Thin Gate Oxide Quality (얇은 게이트 산화막 $30{\AA}$에 대한 박막특성 개선 연구)

  • Eom, Gum-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.421-424
    • /
    • 2004
  • As the deep sub-micron devices are recently integrated high package density, novel process method for sub $0.1{\mu}m$ devices is required to get the superior thin gate oxide characteristics and reliability. However, few have reported on the electrical quality and reliability on the thin gate oxide. In this paper I will recommand a novel shallow trench isolation structure for thin gate oxide $30{\AA}$ of deep sub-micron devices. Different from using normal LOCOS technology, novel shallow trench isolation have a unique 'inverse narrow channel effects' when the channel width of the devices is scaled down shallow trench isolation has less encroachment into the active device area. Based on the research, I could confirm the successful fabrication of shallow trench isolation(STI) structure by the SEM, in addition to thermally stable silicide process was achiever. I also obtained the decrease threshold voltage value of the channel edge and the contact resistance of $13.2[\Omega/cont.]$ at $0.3{\times}0.3{\mu}m^2$. The reliability was measured from dielectric breakdown time, shallow trench isolation structure had tile stable value of $25[%]{\sim}90[%]$ more than 55[sec].

  • PDF

Electric and mechanical properties of $ZrO_2$ reinforced Piezoelectric Ceramics ($ZrO_2$ 첨가된 압전 복합체의 전기-기계 특성)

  • Jeong, Soon-Jong;Kim, Min-Soo;Lee, Dae-Su;Park, Eon-Cheol;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • The objective of this study is to fabricate a piezoelectric composite consisting of a piezoelectric ceramic and a high toughness material and to evaluate their electromechanical properties for high force actuator applications. The mixture of the piezoelectric material, PMNZT, and high toughness material, $ZrO_2$, exhibited high piezoelectric properties as well as good mechanical fracture resistance. Up to 2 vol% of $ZrO_2$ in PMNZT matrix, piezoelectric $d_{33}$ coefficient was above 400 pC/N, being 80% of that for the original PMNZT, and the toughness showed twice of the PMNZT. When the volume fraction of the $ZrO_2$ was above 5%, however, the piezoelectric coefficient became abruptly decreased and it approached 20% of value for the PMNZT.

  • PDF

Impedance Characterization of Tantalum Oxide Deposited through Pulsed-Laser Deposition

  • Kwon, Kyeong-Woo;Jung, Jin-Kwan;Park, Chan-Rok;Kim, Jin-Sang;Baek, Seung-Hyub;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.1-207.1
    • /
    • 2013
  • Tantalum oxide has been extensively investigated as one of the promising Resistive switching materials applicable to Resistive Dynamic Access Memories. Impedance spectroscopy offers simultaneous measurements of electrical and dielectric information, separation of electrical origins among bulk, grain boundaries, and interfaces, and the monitoring of electrical components. Such benefits have been combined with the resistive states of resistive switching devices which can be described in terms of equivalent circuits involving resistors, capacitors, and inductors, The current work employed pulsed laser deposition in order to prepare the oxygen-deficient tantalum oxide. The fabricated devices were controlled between highresistance and low-resistance states in controlled current compliance modes. The corresponding electrical phenomena were monitored both in the dc-based current-voltage characteristics and in the ac-based impedance spectroscopy. The origins of the electrical switching are discussed towards optimized ReRAM devices in terms of interfacial effects.

  • PDF

The Study of Metal CMP Using Abrasive Embedded Pad (고정입자 패드를 이용한 텅스텐 CMP에 관한 연구)

  • Park, Jae-Hong;Kim, Ho-Yun;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

ENHANCED ADHESION STRENGTH OF Cu/polyimide AND Cu/Al/polyimide BY ION BEAM MIXING

  • Chang, G.S.;Kim, T.G.;Chae, K.H.;Whang, C.N.;Zatsepin, D.S.;Kurmaev, E.Z.;Choe, H.S.;Lee, Y.P.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.122-126
    • /
    • 1997
  • the Cu/polyimide system is known to be the best candidate for a multilevel interconnection system due to the low resistance of Cu and to the low dielectric constant of polyimide respectively. Ion beam mixing of Cu(40nm)/polyimide was carried out at room temperature with 80 keV Ar+ and N2+ form $1.5\times$1015 to 15$\times$1015 ions/cm2. The quantitative adhesion strength was measured by a standard scratch test. X-ray photoelectron spectroscopy and x-ray emission spectrocopy are employed to investigate the chemical bonds and the interlayer compound formation of the films Cu/Al/polyimide showed more adhesion strength than Cu/polyimide after ion beam mixing and N2+ ions are more effective in the adhesion enhancement than Ar+ with the same sample geometry. The XES results shows the formation of interlayer compound of CuAl2O4 which can reflect more adhesive Cu/Al/polyimide which has not been reported previously. The latter results is understood by the fact that N2+ ions produce more pyridinelike moiety, amide group and tertiary amine moiety whcih are known as adhesion promotors.

  • PDF