• 제목/요약/키워드: Dielectric discharge

Search Result 614, Processing Time 0.035 seconds

Effect of Dielectric Materials on the Silent Discharge Characteristics for Ozone Generation (오존발생을 위한 무성방전특성에 미치는 유전체의 영향)

  • 박명하;곽동주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.628-630
    • /
    • 2000
  • Since the concept for the ozone generation using a nonequilibrium electric discharge techniques had been proposed by Siemens, some experimental and theoretical studies on the ozone generation by streamer corona discharge, surface discharge and silent discharge have been performed. In this paper some results on the discharge characteristics of the silent discharge gap with various dielectric materials were reported. Dielectric materials used in this study were pyrex glass, quartz and glass beefs with diameter of 1 mm.

  • PDF

Study on Discharge Characteristics in AC Plasma Display Panel with Open Dielectric Structure (개방형 유전체 구조를 갖는 교류형 플라즈마 디스플레이의 방전 특성 연구)

  • Cho, Byung-Gwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.906-909
    • /
    • 2012
  • The address discharge characteristics of a open dielectric structure compared with the conventional panel structure are investigated by measuring the discharge firing voltage. The open dielectric structure could easily produce the discharge between the scan and the sustain electrodes by erasing the dielectric layer between two electrodes. Due to the changes in the discharge firing characteristics of the open dielectric structure between the two sustain electrodes, the conventional reset waveform including the address waveform needs to be modified. The modified driving waveform suitable for the open dielectric structure is proposed and examined in AC PDP.

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

Dependence of Ozone Generation in a Micro Dielectric Barrier Discharge on Dielectric Material and Micro Gap Length

  • Sakoda, Tatsuya;Sung, Youl-Moon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.201-206
    • /
    • 2004
  • In order to investigate the optimum conditions for the effective ozone formation in a dielectric barrier discharge, measurements of ozone concentration were carried out for various conditions such as the gap length, the dielectric material and the operating gas. It was found that the optimum discharge conditions differed exceedingly in the types of operating gases and dielectric materials. In dry air, dielectric material with low dielectric constant and thermal conductivity, which might contribute to the restriction of the gas temperature rise in the discharge region, proved effective in obtaining both high ozone yield and concentration. The optimum gap length was considered to be in the range of 600-800 mm. In oxygen, using a quartz glass disk as a dielectric material, the required condition to obtain the high ozone yield and concentration was expanded.

Ozone Generation Characteristics in Dielectric Barrier Discharge (유전체 장벽 방전내에서 오존발생 특성)

  • Lee, Hyeong-Ho;Jo, Guk-Hui;Kim, Yeong-Bae;Seo, Gil-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.673-678
    • /
    • 2000
  • The dielectric barrier discharge(DBD) is a common method to create a nonthermal plasma in which electrical energy is used to create electrons with a high average kinetic energy. The unique aspect of dielectric barrier discharges is the large array of short lifetime(10ns) silent discharges created over the surface of the dielectric. A silent discharge is generated when the applied voltage exceeds the breakdown voltage of the carrier gas creating a conduction path between the applied electrode and grounded electrode. As charge accumulates on the dielectric, the electric field is reduced below the breakdown field of the carrier gas and the silent discharge self terminates preventing the DBD cell from producing a thermal arc. In fact, the most significant application of dielectric barrier discharges is to generate ozone for contaminated water treatment. Therefore, experiments were perfomed at 1∼2[bar] pressure using a coaxial geometry single dielectric barrier discharge for ozone concentrations and energy densities. The main result show that the concentration and efficiency of ozone are influenced by gas nature, gas quantity, gas pressure, supplied voltage and frequency.

  • PDF

A Characteristic Analysis of Ozone Generator Using the Al2O3 Ceramic Dielectric According to Gas Type(O2/Air) (Al2O3 유전체를 이용한 산소/공기 원료에 따른 오존발생기의 특성)

  • Park, Hyun-Mi;Song, Hyun-Jig;Park, Won-Joo;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.76-81
    • /
    • 2014
  • The ozone generation is commonly made with silent discharge method using quartz glass dielectric. In this paper, using $Al_2O_3$ dielectric to instead of the traditional quartz glass dielectric to improve the system efficiency is presented. The dielectric was manufactured as tube shape (Internal diameter${\times}$ Outside diameter: $11{\times}15mm$) using 99% $Al_2O_3$ ceramic. The characteristics of dielectric discharge and ozone generation were studied of experiments with variation of discharge power, discharge electrode space and rate of flow for supplied gas ($O_2$/Air). As the experimental results, in the same discharge space, the ozone concentration continuously increased with input power increasing, and ozone yield increased until saturation happened. Also, the expended power increased with discharge space extended due to discharge power increased. In additional, the ozone concentration of oxygen ozone was higher than air that was observed when using oxygen ozone in proposed experiments.

Electric Field Analysis and Removal Characteristics of Escherichia Coli for Water Discharge Tube with Globular SiO$_2$ (구형 SiO$_2$를 갖는 수방전관의 전계 해석 및 대장균 제거 특성)

  • 이동훈
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.103-108
    • /
    • 2004
  • This paper shows the simulation of electric field distribution and removal characteristics of Escherichia coli for water discharge tube with globular $SiO_2$. At the experiments of the removing Escherichia coli used the discharge tube with globular dielectric($SiO_2$), because the electric field is increased when applied voltage is increased, the removed ratio of Escherichia coli was related with increasing of applied voltage. When a passing number of test water in water discharge tube is increased, the removed ratio of Escherichia coli is increased because passing number of territory with electric field is increased. When diameter of globular dielectric($SiO_2$) is increased, the removed time of Escherichia coli was decreased because electric field for dielectric polarization of globular dielectric($SiO_2$) was increased. Also, the removed ratio of Escherichia coli of the water discharge tube with globular dielectric($SiO_2$) was measured higher than the removal ratio of the discharge tube without globular dielectric($SiO_2$)

Development of a Flow Sensor Using DBD (Dielectric Barrier Discharge) (DBD (Dielectric Barrier Discharge)를 이용한 유량 센서 개발에 관한 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2076-2081
    • /
    • 2008
  • In this study, a new concept of a flow sensor is developed using dielectric barrier discharge (DBD). Current of DBD generated between two electrodes is changed with varying flow rates. Therefore, it is possible to measure the flow rate by correlating generated DBD current with flow rates. The effects of flow rate, frequency, channel height, diameter of electrodes and distance between electrodes on the performance of the flow sensor using DBD are experimentally investigated.

  • PDF

Effects of Operating Parameters on Toluene Removal in Dielectric Barrier Discharge Process (무성방전내에서 톨루엔 제거에 미치는 운전변수의 영향)

  • 정재우;이용환;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.173-182
    • /
    • 2002
  • We investigated the effects of operating variables, such as electrical. reactor and gas parameters on toluene removal and discharge property in the dielectric barrier discharge (DBD) process. The toluene removal was initiated with the energy transfer to the reactor by loading of voltages higher than the discharge onset value. The energy transfer and toluene removal increased with the applied voltage. Higher removal rate was observed with smooth surface electrode despite of lower energy transfer compared with the coarse electrode, because more uniform discharge can be obtained on smooth surface state. The decrease of dielectric material thickness enhanced the removal efficiency by increasing the discharge potential. The toluene removal efficiency decreased with the increase of the inlet concentration. The increase of gas retention time enhanced the removal efficiency by the increase of energy density. The oxygen and humidity contents seem to exert significant influences on the toluene removal by dominating the generation of electrons, ions, and radicals which are key factors in the removal mechanism.

Discharge Characteristics of AC-PDPs with a grooved front dielectric layer

  • Jeong, Jin-Hee;Lim, Jong-Lae;Kim, Oe-Dong;Choi, Kwang-Yeol;Yoo, Eun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1266-1268
    • /
    • 2005
  • The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases. The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases.

  • PDF